Mechanical Squeezed-Fock Qubit: Towards Quantum Weak-Force Sensing
- URL: http://arxiv.org/abs/2507.13161v2
- Date: Tue, 05 Aug 2025 01:57:36 GMT
- Title: Mechanical Squeezed-Fock Qubit: Towards Quantum Weak-Force Sensing
- Authors: Yi-Fan Qiao, Jun-Hong An, Peng-Bo Li,
- Abstract summary: Mechanical qubits offer unique advantages over other qubit platforms, but their potential is constrained by the inherently weak nonlinearities and small anharmonicity of nanomechanical resonators.<n>We propose to overcome this shortcoming by using squeezed Fock states of phonons in a parametrically driven nonlinear mechanical oscillator.<n>We show that our mechanical qubit can serve as a quantum sensor for weak forces, with its resulting sensitivity increased by at least one order of magnitude over that of traditional mechanical qubits.
- Score: 4.781634585245786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mechanical qubits offer unique advantages over other qubit platforms, primarily in terms of coherence time and possibilities for enhanced sensing applications, but their potential is constrained by the inherently weak nonlinearities and small anharmonicity of nanomechanical resonators. We propose to overcome this shortcoming by using squeezed Fock states of phonons in a parametrically driven nonlinear mechanical oscillator. We find that, under two-phonon driving, squeezed Fock states become eigenstates of a Kerr-nonlinear mechanical oscillator, featuring an energy spectrum with exponentially enhanced and tunable anharmonicity, such that the transitions to higher energy states are exponentially suppressed. This enables us to encode the mechanical qubit within the ground and first excited squeezed Fock states of the driven mechanical oscillator. This kind of mechanical qubit is termed mechanical squeezed-Fock qubit. We also show that our mechanical qubit can serve as a quantum sensor for weak forces, with its resulting sensitivity increased by at least one order of magnitude over that of traditional mechanical qubits. The proposed mechanical squeezed-Fock qubit provides a powerful quantum phonon platform for quantum sensing and information processing.
Related papers
- Energy-Efficient Pseudo-Ratchet for Brownian Computers through One-Dimensional Quantum Brownian Motion [30.817172862352244]
We introduce a new approach based on one-dimensional (1D) quantum Brownian motion.<n>We exploit that quantum resonance effects in 1D systems divide the momentum space of particles into subspaces.<n>We analyze this pseudo-ratchet mechanism without energy dissipation from an entropic perspective.
arXiv Detail & Related papers (2025-05-13T04:20:07Z) - Tunable anharmonicity in cavity optomechanics in the unresolved sideband regime [0.0]
We present a theory that predicts the measurable signatures left by the mechanical anharmonicity.<n>In particular, we obtain analytically and numerically the mechanical displacement spectrum, and explore the imprints of the mechanical anharmonicity on the cavity light field.
arXiv Detail & Related papers (2025-01-15T16:21:21Z) - A mechanical quantum memory for microwave photons [17.201524716152807]
We show strong coupling between a transmon superconductingbit and an long-lived mechanical oscillator.<n>The findings extend the exceptional storage to the quantum regime, putting them forward as compact bosonic elements in future applications.
arXiv Detail & Related papers (2024-12-11T01:21:09Z) - Optimizing mechanical entanglement using squeezing and parametric amplification [0.0]
We propose a scheme of an optomechanical system that optimize entanglement in nanomechanical resonators.<n>The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Optimized mechanical quadrature squeezing beyond the 3-dB limit via a gradient-descent algorithm [3.182901197671368]
We propose a reliable scheme for generating mechanical quadrature squeezing in a typical cavity optomechanical system.
We realize strong quadrature squeezing in a mechanical resonator that exceeds the 3-dB steady-state limit.
This paper will promote the application of optimal quantum control in quantum optics and quantum information science.
arXiv Detail & Related papers (2024-04-21T07:22:09Z) - Quantum parametric amplifiation of phonon-mediated magnon-spin
interaction [12.464802118191724]
We show how to strongly couple the magnon modes in a hybrid tripartite system.
The coherent magnon-phonon coupling is engineered by introducing the quantum parametric amplifiation of the mechanical motion.
Our work opens up prospects for developing novel quantum transducers, quantum memories and high-precision measurements.
arXiv Detail & Related papers (2023-07-22T02:33:28Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Enhanced phonon blockade in a weakly-coupled hybrid system via
mechanical parametric amplification [11.798443611441726]
We show how to achieve strong phonon blockade (PB) in a hybrid spin-mechanical system in the weak-coupling regime.
Our work opens up prospects for the implementation of an efficient single-phonon source, with potential applications in quantum phononics and phononic quantum networks.
arXiv Detail & Related papers (2021-12-16T01:50:08Z) - Mechanical squeezing via unstable dynamics in a microcavity [0.0]
We show that strong mechanical quantum squeezing in a linear optomechanical system can be generated through the dynamical instability reached in the far red-detuned and ultrastrong coupling regime.
We argue for its feasibility for the case of a levitated nanoparticles coupled to a microcavity via coherent scattering.
Our results bring forth optical microcavities in the unresolved sideband regime as powerful mechanical squeezers for levitated nanoparticles, and hence as key tools for quantum-enhanced inertial and force sensing.
arXiv Detail & Related papers (2021-12-02T11:40:59Z) - Quantum state preparation, tomography, and entanglement of mechanical
oscillators [0.0]
We use a superconducting qubit to control and read out the quantum state of a pair of nanomechanical resonators.
Our result represents a concrete step toward feedback-based operation of a quantum acoustic processor.
arXiv Detail & Related papers (2021-10-14T17:28:25Z) - Quantum manipulation of a two-level mechanical system [19.444636864515726]
We consider a nonlinearly coupled electromechanical system, and develop a quantitative theory for two-phonon cooling.
In the presence of two-phonon cooling, the mechanical Hilbert space is effectively reduced to its ground and first excited states.
We propose a scheme for performing arbitrary Bloch sphere rotations, and derive the fidelity in the specific case of a $pi$-pulse.
arXiv Detail & Related papers (2021-01-05T19:34:44Z) - Proposal for a nanomechanical qubit [0.0]
A mechanical quantum bit could provide an important new platform for quantum computation and sensing.
We show that by coupling one of the flexural modes of a suspended carbon nanotube to the charge states of a double quantum dot defined in the nanotube, it is possible to induce sufficient anharmonicity.
Remarkably, the dephasing due to the quantum dot is expected to be reduced by several orders of magnitude in the coupled system.
arXiv Detail & Related papers (2020-08-24T15:54:23Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.