論文の概要: Physically Unclonable Functions and AI: Two Decades of Marriage
- arxiv url: http://arxiv.org/abs/2008.11355v2
- Date: Thu, 11 Feb 2021 16:32:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 21:21:10.839678
- Title: Physically Unclonable Functions and AI: Two Decades of Marriage
- Title(参考訳): 物理的に不可解な機能とai: 結婚20年
- Authors: Fatemeh Ganji and Shahin Tajik
- Abstract要約: ここでの主な焦点は、ハードウェアプリミティブのセキュリティを評価するために、AIから借りた方法を探ることである。
AI技術を適用して設計したPUFをレビューすることにより、今後の研究方向性について考察する。
- 参考スコア(独自算出の注目度): 7.601937548486356
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The current chapter aims at establishing a relationship between artificial
intelligence (AI) and hardware security. Such a connection between AI and
software security has been confirmed and well-reviewed in the relevant
literature. The main focus here is to explore the methods borrowed from AI to
assess the security of a hardware primitive, namely physically unclonable
functions (PUFs), which has found applications in cryptographic protocols,
e.g., authentication and key generation. Metrics and procedures devised for
this are further discussed. Moreover, By reviewing PUFs designed by applying AI
techniques, we give insight into future research directions in this area.
- Abstract(参考訳): 現在の章は、人工知能(AI)とハードウェアセキュリティの関係を確立することを目的としている。
このようなaiとソフトウェアセキュリティの関連が確認され、関連する文献でよく検討されている。
ここでの重点は、aiから借用された、ハードウェアプリミティブのセキュリティを評価するための方法、すなわち、認証や鍵生成といった暗号プロトコルの応用を見出した物理的非clonable function(pufs)を探求することにある。
このために考案されたメトリクスと手順についてさらに論じる。
さらに、AI技術を適用したPUFの見直しにより、この分野における今後の研究方向性について考察する。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Enhancing Artificial intelligence Policies with Fusion and Forecasting:
Insights from Indian Patents Using Network Analysis [0.0]
本稿では,人工知能(AI)技術の相互接続性と相互依存性について述べる。
異なる時間窓を通して技術を分析し、その重要性を定量化することで、AIのランドスケープを形成する重要なコンポーネントに関する重要な洞察を明らかにしました。
論文 参考訳(メタデータ) (2023-04-20T18:37:11Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - A Comprehensive Study on Artificial Intelligence Algorithms to Implement
Safety Using Communication Technologies [1.2710179245406195]
この研究は、異なるコミュニケーション技術を使用するAIベースの安全ソリューションの現状を包括的に把握することを目的としている。
その結果、安全を実装するためにAIとコミュニケーションを最も活用しているのは自動車ドメインであることが示された。
携帯電話以外の通信技術の利用が主流であるが、2020年からは5G技術の展開に伴い、携帯電話通信の利用が急速に増加する傾向が観察されている。
論文 参考訳(メタデータ) (2022-05-17T14:38:38Z) - AI-Assisted Authentication: State of the Art, Taxonomy and Future
Roadmap [0.0]
本稿では,人工知能の認証への応用に焦点を当てる。
新たなAI支援認証スキームによって、我々の調査は高いレベルの全体的な理解を提供する。
他の関連する調査とは対照的に、我々の研究は、認証におけるAIの役割に焦点を合わせた最初のものだ。
論文 参考訳(メタデータ) (2022-04-25T21:16:55Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - Certifiable Artificial Intelligence Through Data Fusion [7.103626867766158]
本稿では,人工知能(AI)システムの採用,フィールド化,保守に関する課題をレビューし,提案する。
画像データ融合により、精度対距離を考慮したAI物体認識精度を支援する。
論文 参考訳(メタデータ) (2021-11-03T03:34:19Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Vulnerabilities of Connectionist AI Applications: Evaluation and Defence [0.0]
この記事では、コネクショナリスト人工知能(AI)アプリケーションのITセキュリティを扱い、完全性への脅威に焦点を当てます。
脅威の包括的リストと軽減の可能性は、最先端の文献をレビューすることによって提示される。
緩和に関する議論は同様に、AIシステム自体のレベルに限定されず、むしろサプライチェーンの文脈でAIシステムを見ることを提唱している。
論文 参考訳(メタデータ) (2020-03-18T12:33:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。