論文の概要: Enhancing Artificial intelligence Policies with Fusion and Forecasting:
Insights from Indian Patents Using Network Analysis
- arxiv url: http://arxiv.org/abs/2304.10596v1
- Date: Thu, 20 Apr 2023 18:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 16:43:18.297462
- Title: Enhancing Artificial intelligence Policies with Fusion and Forecasting:
Insights from Indian Patents Using Network Analysis
- Title(参考訳): 融合と予測による人工知能政策の強化:ネットワーク分析を用いたインド特許の考察
- Authors: Akhil Kuniyil, Avinash Kshitij, and Kasturi Mandal
- Abstract要約: 本稿では,人工知能(AI)技術の相互接続性と相互依存性について述べる。
異なる時間窓を通して技術を分析し、その重要性を定量化することで、AIのランドスケープを形成する重要なコンポーネントに関する重要な洞察を明らかにしました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a study of the interconnectivity and interdependence of
various Artificial intelligence (AI) technologies through the use of centrality
measures, clustering coefficients, and degree of fusion measures. By analyzing
the technologies through different time windows and quantifying their
importance, we have revealed important insights into the crucial components
shaping the AI landscape and the maturity level of the domain. The results of
this study have significant implications for future development and
advancements in artificial intelligence and provide a clear understanding of
key technology areas of fusion. Furthermore, this paper contributes to AI
public policy research by offering a data-driven perspective on the current
state and future direction of the field. However, it is important to
acknowledge the limitations of this research and call for further studies to
build on these results. With these findings, we hope to inform and guide future
research in the field of AI, contributing to its continued growth and success.
- Abstract(参考訳): 本稿では, 集中度測定, クラスタリング係数, 融合度測定を用いて, 各種人工知能(AI)技術の相互接続性と相互依存性について検討する。
異なる時間窓を通じて技術を分析し、その重要性を定量化することで、AIのランドスケープとドメインの成熟度を形作る重要なコンポーネントに関する重要な洞察を明らかにしました。
この研究の結果は、人工知能の将来の発展と進歩に重要な意味を持ち、核融合の重要な技術領域を明確に理解する。
さらに,本論文はAIの公共政策研究に貢献し,現場の現状と今後の方向性についてデータ駆動の視点を提供する。
しかし、この研究の限界を認識し、これらの結果に基づいてさらなる研究を求めることが重要である。
これらの発見により、AIの分野での今後の研究を通知し、ガイドし、その成長と成功に寄与したいと考えています。
関連論文リスト
- Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives [10.16399860867284]
生成人工知能(AI)と大規模言語モデル(LLM)の出現は、自然言語処理(NLP)の新しい時代を象徴している。
本稿では,これらの最先端技術の現状を概観し,その顕著な進歩と広範囲な応用を実証する。
論文 参考訳(メタデータ) (2024-07-20T18:48:35Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
生成人工知能(AI)の現状と今後の動向について批判的考察
GoogleのGeminiや、予想されるOpenAI Q*プロジェクトといったイノベーションが、さまざまなドメインにわたる研究の優先順位とアプリケーションをどう変えているのかを調査した。
この研究は、倫理的および人間中心の手法をAI開発に取り入れることの重要性を強調し、社会規範と福祉の整合性を確保した。
論文 参考訳(メタデータ) (2023-12-18T01:11:39Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
近年、CHIコミュニティは人間中心のレスポンシブル人工知能の研究において著しい成長を遂げている。
この研究はすべて、人権と倫理に根ざしたまま、人類に利益をもたらすAIを開発し、AIの潜在的な害を減らすことを目的としている。
本研究グループでは,これらのトピックに関心のある学術・産業の研究者を集結させ,現在の研究動向と今後の研究動向を地図化することを目的とする。
論文 参考訳(メタデータ) (2023-02-16T08:59:42Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
ニューラルシンボリック・コンピューティング(NeSy)は、人工知能(AI)の活発な研究領域である。
NeSyは、ニューラルネットワークにおける記号表現の推論と解釈可能性の利点と堅牢な学習の整合性を示す。
論文 参考訳(メタデータ) (2022-10-28T04:38:10Z) - Characterising Research Areas in the field of AI [68.8204255655161]
トピックの共起ネットワーク上でクラスタリング分析を行うことで,主要な概念テーマを特定した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを浮き彫りにしている。
論文 参考訳(メタデータ) (2022-05-26T16:30:30Z) - On the Evolution of A.I. and Machine Learning: Towards a Meta-level
Measuring and Understanding Impact, Influence, and Leadership at Premier A.I.
Conferences [0.26999000177990923]
我々は、過去数十年間、AIと機械学習研究者の影響力、影響力、リーダーシップの分析を可能にする手段を提示する。
我々は,1969年に開催された第1回IJCAI(International Joint Conference on Artificial Intelligence)以降,AIと機械学習のフラッグシップカンファレンスで発表された論文について検討する。
論文 参考訳(メタデータ) (2022-05-26T03:41:12Z) - Axes for Sociotechnical Inquiry in AI Research [3.0215443986383734]
技術開発の新たな発展領域を探求する4つの方向を提案する。
本論文は、社会技術調査のためのレキシコンを提供し、消費者向けドローン技術の例を通してそれを解説する。
論文 参考訳(メタデータ) (2021-04-26T16:49:04Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。