論文の概要: Urban Mosaic: Visual Exploration of Streetscapes Using Large-Scale Image
Data
- arxiv url: http://arxiv.org/abs/2008.13321v1
- Date: Mon, 31 Aug 2020 02:23:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 05:42:00.305537
- Title: Urban Mosaic: Visual Exploration of Streetscapes Using Large-Scale Image
Data
- Title(参考訳): 都市モザイク:大規模画像データを用いた街並みのビジュアル探索
- Authors: Fabio Miranda, Maryam Hosseini, Marcos Lage, Harish Doraiswamy, Graham
Dove, Claudio T. Silva
- Abstract要約: 都市モザイク (Urban Mosaic) は、ニューヨーク市の770万枚のストリートレベルの画像からなる空間的・時間的に密集したデータセットを通して、都市の織物を探索するためのツールである。
- 参考スコア(独自算出の注目度): 13.01318877814786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban planning is increasingly data driven, yet the challenge of designing
with data at a city scale and remaining sensitive to the impact at a human
scale is as important today as it was for Jane Jacobs. We address this
challenge with Urban Mosaic,a tool for exploring the urban fabric through a
spatially and temporally dense data set of 7.7 million street-level images from
New York City, captured over the period of a year. Working in collaboration
with professional practitioners, we use Urban Mosaic to investigate questions
of accessibility and mobility, and preservation and retrofitting. In doing so,
we demonstrate how tools such as this might provide a bridge between the city
and the street, by supporting activities such as visual comparison of
geographically distant neighborhoods,and temporal analysis of unfolding urban
development.
- Abstract(参考訳): 都市計画はますますデータ駆動型になっているが、都市規模のデータで設計し、人間規模でのインパクトに敏感で続けるという課題は、今日のジェーン・ジェイコブスと同じくらい重要である。
この課題に対処するUrban Mosaicは、空間的にも時間的にも密集した、ニューヨーク市の770万のストリートレベルの画像集合を1年間にわたって捉えた都市ファブリックを探索するツールだ。
専門家と協働して,都市モザイクを用いてアクセシビリティとモビリティ,保存とレトロフィッティングの課題を調査した。
そこで,このようなツールが都市と街路の橋渡しとなる可能性を示し,地理的に離れた地域を視覚的に比較したり,展開する都市開発を時間的に分析したりする活動を支援する。
関連論文リスト
- StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting [85.67616000086232]
StreetSurfGSは、スケーラブルな街路景観の再構築に適したガウススプラッティングを利用するための最初の方法である。
StreetSurfGSは、平面ベースのオクツリー表現とセグメンテーショントレーニングを使用して、メモリコストを削減し、ユニークなカメラ特性に対応し、スケーラビリティを確保する。
スパースビューとマルチスケールの課題に対処するために、隣接する情報と長期情報を活用する2段階マッチング戦略を用いる。
論文 参考訳(メタデータ) (2024-10-06T04:21:59Z) - BuildingView: Constructing Urban Building Exteriors Databases with Street View Imagery and Multimodal Large Language Mode [1.0937094979510213]
ストリートビュー・イメージリーの進歩と、都市研究との統合によって、都市分析において、外部建設はますます重要になっている。
我々は,Googleストリートビューの高解像度視覚データをOpenStreetMapの空間情報とOverpass APIを介して統合する新しいアプローチであるBuildingViewを提案する。
本研究は,都市の建築外装データの精度を向上し,キーサステナビリティと設計指標を特定し,その抽出と分類のための枠組みを開発する。
論文 参考訳(メタデータ) (2024-09-29T03:00:16Z) - MetaUrban: An Embodied AI Simulation Platform for Urban Micromobility [52.0930915607703]
最近のロボティクスとエンボディードAIの進歩により、公共の都市空間はもはや人間専用ではない。
公共の都市空間における短距離移動のためのAIによって実現されるマイクロモビリティは、将来の交通システムにおいて重要な要素である。
本稿では,AI駆動型都市マイクロモビリティ研究のための構成シミュレーションプラットフォームであるMetaUrbanを紹介する。
論文 参考訳(メタデータ) (2024-07-11T17:56:49Z) - Eyes on the Streets: Leveraging Street-Level Imaging to Model Urban Crime Dynamics [0.0]
本研究では,ニューヨーク市における都市安全の課題について,建設環境と犯罪率との関係について検討した。
本研究では,都市景観と犯罪統計との関連性を明らかにすることを目的として,街路景観の特徴と犯罪率との関連性に着目した。
論文 参考訳(メタデータ) (2024-04-15T21:33:45Z) - CityPulse: Fine-Grained Assessment of Urban Change with Street View Time
Series [12.621355888239359]
都市変革は、個人と地域社会の両方に大きな社会的影響を及ぼす。
本研究では,大規模に構築された環境における物理的変化を効果的に捉えるために,エンドツーエンドの変更検出モデルを提案する。
我々のアプローチは既存のデータセットを補完し、都市の変化をきめ細やかに正確に評価する可能性がある。
論文 参考訳(メタデータ) (2024-01-02T08:57:09Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - UrbanBIS: a Large-scale Benchmark for Fine-grained Urban Building
Instance Segmentation [50.52615875873055]
都市BISは6つの実際の都市のシーンで構成され、25億点があり、面積は10.78平方キロメートルである。
UrbanBISは、建物、車両、植生、道路、橋など、豊富な都市オブジェクトに意味レベルのアノテーションを提供する。
UrbanBISは、きめ細かいサブカテゴリを導入した最初の3Dデータセットである。
論文 参考訳(メタデータ) (2023-05-04T08:01:38Z) - A Contextual Master-Slave Framework on Urban Region Graph for Urban
Village Detection [68.84486900183853]
都市域を階層的にモデル化する都市域グラフ(URG)を構築した。
そこで我々は,都市部をURGから効果的に検出する新しいコンテキスト・マスタ・スレーブ・フレームワークを設計した。
提案手法は,都市部における紫外線検出の一般性と特異性のバランスをとることができる。
論文 参考訳(メタデータ) (2022-11-26T18:17:39Z) - Urban form and COVID-19 cases and deaths in Greater London: an urban
morphometric approach [63.29165619502806]
新型コロナウイルスのパンデミックは、都市密度に関してかなりの議論を巻き起こした。
これは19世紀中頃のイングランドで、公衆衛生と都市計画の分野が出現して始まった古い議論である。
都市形態を個々の建物レベルで記述し、その後、公的な近隣住民の情報を集約する。
論文 参考訳(メタデータ) (2022-10-16T10:01:10Z) - Effective Urban Region Representation Learning Using Heterogeneous Urban
Graph Attention Network (HUGAT) [0.0]
都市域の表現を学習するためのヘテロジニアスな都市グラフアテンションネットワーク(HUGAT)を提案する。
ニューヨークのデータに関する我々の実験では、HUGATは最先端のすべてのモデルより優れています。
論文 参考訳(メタデータ) (2022-02-18T04:59:20Z) - CitySurfaces: City-Scale Semantic Segmentation of Sidewalk Materials [6.573006589628846]
ほとんどの都市では、データ収集のコスト抑制と時間のかかる性質のために、表面の空間カタログが欠落している。
近年のコンピュータビジョンの進歩とストリートレベルの画像の入手は、都市が大規模に構築された環境データを抽出する新たな機会を提供する。
そこで我々は,歩道素材の分類にコンピュータビジョン技術を活用する,能動的学習ベースのフレームワークであるCitySurfacesを提案する。
論文 参考訳(メタデータ) (2022-01-06T21:58:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。