Testing gravity with cold atom interferometry: Results and prospects
- URL: http://arxiv.org/abs/2009.01484v3
- Date: Tue, 5 Jan 2021 11:06:44 GMT
- Title: Testing gravity with cold atom interferometry: Results and prospects
- Authors: Guglielmo M. Tino
- Abstract summary: Atom interferometers have been developed in the last three decades as powerful tools to investigate gravity.
I describe past and ongoing experiments with an outlook on what I think are the main prospects in this field and the potential to search for new physics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atom interferometers have been developed in the last three decades as new
powerful tools to investigate gravity. They were used for measuring the gravity
acceleration, the gravity gradient, and the gravity-field curvature, for the
determination of the gravitational constant, for the investigation of gravity
at microscopic distances, to test the equivalence principle of general
relativity and the theories of modified gravity, to probe the interplay between
gravitational and quantum physics and to test quantum gravity models, to search
for dark matter and dark energy, and they were proposed as new detectors for
the observation of gravitational waves. Here I describe past and ongoing
experiments with an outlook on what I think are the main prospects in this
field and the potential to search for new physics.
Related papers
- Gravitational Wave and Quantum Graviton Interferometer Arm Detection of Gravitons [0.0]
This paper explores the quantum and classical descriptions of gravitational wave detection in interferometers like LIGO.
We demonstrate that while a simple graviton scattering model fails to explain the observed arm displacements, both the classical gravitational wave approach and a quantum gravitational energy method successfully predict the correct results.
arXiv Detail & Related papers (2024-11-09T19:33:34Z) - Quantum effects in gravity beyond the Newton potential from a delocalised quantum source [0.9405321764712891]
We show for the first time that gravity is not compatible with a classical description.
Experiments such as the generation of gravitationally induced entanglement between two quantum sources of gravity can be explained with the Newton potential.
arXiv Detail & Related papers (2024-02-15T19:33:04Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Inference of gravitational field superposition from quantum measurements [1.7246954941200043]
In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state.
We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states.
Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.
arXiv Detail & Related papers (2022-09-06T04:37:07Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Can we detect the quantum nature of weak gravitational fields? [0.0]
An experimental answer to the question of the quantization of gravity is of renewed interest in the era of gravitational wave detectors.
We review and investigate an important subset of quantum gravity, detecting quantum signatures of weak gravitational fields in table-top experiments and interferometers.
arXiv Detail & Related papers (2021-10-06T07:21:09Z) - Resolving the gravitational redshift within a millimeter atomic sample [94.94540201762686]
Einstein's theory of general relativity states that clocks at different gravitational potentials tick at different rates.
We measure a linear frequency gradient consistent with the gravitational redshift within a single millimeter scale sample of ultracold strontium.
arXiv Detail & Related papers (2021-09-24T23:58:35Z) - Bose-Einstein condensates in microgravity and fundamental tests of
gravity [0.0]
Light-pulse atom interferometers are highly sensitive to inertial and gravitational effects.
Light-pulse atom interferometers are promising candidates for tests of gravitational physics.
arXiv Detail & Related papers (2021-07-08T09:37:42Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Atom-interferometric test of the universality of gravitational redshift
and free fall [48.82541018696971]
Light-pulse atom interferometers constitute powerful quantum sensors for inertial forces.
We present a specific geometry which together with state transitions leads to a scheme that is sensitive to both violations of the universality of free fall and gravitational redshift.
arXiv Detail & Related papers (2020-01-27T13:35:30Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.