Bose-Einstein condensates in microgravity and fundamental tests of
gravity
- URL: http://arxiv.org/abs/2107.03709v1
- Date: Thu, 8 Jul 2021 09:37:42 GMT
- Title: Bose-Einstein condensates in microgravity and fundamental tests of
gravity
- Authors: Christian Ufrecht, Albert Roura and Wolfgang P. Schleich
- Abstract summary: Light-pulse atom interferometers are highly sensitive to inertial and gravitational effects.
Light-pulse atom interferometers are promising candidates for tests of gravitational physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Light-pulse atom interferometers are highly sensitive to inertial and
gravitational effects. As such they are promising candidates for tests of
gravitational physics. In this article the state-of-the-art and proposals for
fundamental tests of gravity are reviewed. They include the measurement of the
gravitational constant $G$, tests of the weak equivalence principle, direct
searches of dark energy and gravitational-wave detection. Particular emphasis
is put on long-time interferometry in microgravity environments accompanied by
an enormous increase of sensitivity. In addition, advantages as well as
disadvantages of Bose-Einstein condensates as atom sources are discussed.
Related papers
- Stochastic Metric Fluctuations and Detection of Gravitons [0.0]
We will propose a way to detect gravitons by replicating the Brownian motion experiment.
The Bose-Einstein occupation number $N_g$ for gravitons can be large enough to be the particle components of the gravitational random metric fluctuations in a physical system.
arXiv Detail & Related papers (2024-08-29T20:11:29Z) - Bose-Einstein condensate as a quantum gravity probe; "Erste Abhandlung" [0.11704154007740832]
We consider a Bose-Einstein condensate interacting with a gravitational wave for the case when the gravitational fluctuations are quantized.
We observe that the solution of the time-dependent part of the pseudo-Goldstone boson has infusions from the noise induced by gravitons.
We observe the effect of decoherence due to interacting phonon modes in the quantum gravitational Fisher information.
arXiv Detail & Related papers (2024-04-09T06:57:00Z) - Measuring gravity by holding atoms [0.0]
We optimize sensitivity of a lattice interferometer and use a system of signal inversions and switches to suppress and quantify systematic effects.
This enables us to measure the attraction of a miniature source mass, ruling out the existence of screened dark energy theories.
Further upgrades may enable measuring forces at sub-millimeter ranges, the gravitational Aharonov-Bohm effect and the gravitational constant, compact gravimetry.
arXiv Detail & Related papers (2023-10-02T17:07:54Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Quantum Gravitational Sensor for Space Debris [0.0]
We will establish a three dimensional model to describe the gravity gradient signal from an external moving object.
We will then theoretically investigate the sensitivities using the matter-wave interferometer based on the Stern-Gerlach set-up.
We will consider objects near Earth-based experiments and space debris in proximity of satellites.
arXiv Detail & Related papers (2022-11-28T19:00:03Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Testing gravity with cold atom interferometry: Results and prospects [0.0]
Atom interferometers have been developed in the last three decades as powerful tools to investigate gravity.
I describe past and ongoing experiments with an outlook on what I think are the main prospects in this field and the potential to search for new physics.
arXiv Detail & Related papers (2020-09-03T06:51:26Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Atom-interferometric test of the universality of gravitational redshift
and free fall [48.82541018696971]
Light-pulse atom interferometers constitute powerful quantum sensors for inertial forces.
We present a specific geometry which together with state transitions leads to a scheme that is sensitive to both violations of the universality of free fall and gravitational redshift.
arXiv Detail & Related papers (2020-01-27T13:35:30Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.