論文の概要: OnsagerNet: Learning Stable and Interpretable Dynamics using a
Generalized Onsager Principle
- arxiv url: http://arxiv.org/abs/2009.02327v3
- Date: Mon, 18 Oct 2021 02:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 08:38:28.378324
- Title: OnsagerNet: Learning Stable and Interpretable Dynamics using a
Generalized Onsager Principle
- Title(参考訳): OnsagerNet: 一般化したOnsager原則による安定性と解釈可能なダイナミクスの学習
- Authors: Haijun Yu, Xinyuan Tian, Weinan E and Qianxiao Li
- Abstract要約: 我々は、一般化オンサーガー原理に基づいて、物理過程からサンプリングされた軌道データを用いて、安定かつ物理的に解釈可能な力学モデルを学ぶ。
さらに、この手法をレイリー・ベナード対流の研究に応用し、ローレンツ風の低次元自律還元次モデルを学ぶ。
- 参考スコア(独自算出の注目度): 19.13913681239968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a systematic method for learning stable and physically
interpretable dynamical models using sampled trajectory data from physical
processes based on a generalized Onsager principle. The learned dynamics are
autonomous ordinary differential equations parameterized by neural networks
that retain clear physical structure information, such as free energy,
diffusion, conservative motion and external forces. For high dimensional
problems with a low dimensional slow manifold, an autoencoder with metric
preserving regularization is introduced to find the low dimensional generalized
coordinates on which we learn the generalized Onsager dynamics. Our method
exhibits clear advantages over existing methods on benchmark problems for
learning ordinary differential equations. We further apply this method to study
Rayleigh-Benard convection and learn Lorenz-like low dimensional autonomous
reduced order models that capture both qualitative and quantitative properties
of the underlying dynamics. This forms a general approach to building reduced
order models for forced dissipative systems.
- Abstract(参考訳): 一般化オンザガー原理に基づく物理過程からのサンプル軌道データを用いて,安定かつ物理的に解釈可能な力学モデルを学ぶための体系的手法を提案する。
学習力学は、自由エネルギー、拡散、保守運動、外力などの明確な物理構造情報を保持するニューラルネットワークによってパラメータ化される自律常微分方程式である。
低次元のスロー多様体を持つ高次元問題に対して、距離保存正規化を持つオートエンコーダを導入し、一般化されたオンサーガーダイナミクスを学ぶ低次元一般化座標を求める。
本手法は,通常の微分方程式を学習するためのベンチマーク問題に対して,既存の手法よりも明確な利点を示す。
この手法をレイリー・ベナード対流の研究に応用し、基礎となる力学の質的および定量的性質を捉えるローレンツ様低次元自律還元秩序モデルを学ぶ。
これは、強制散逸系のための減数次モデルを構築する一般的なアプローチを形成する。
関連論文リスト
- Symmetry-regularized neural ordinary differential equations [0.0]
本稿では,隠れ状態のダイナミクスとバック伝播のダイナミクスの両方において,Lie対称性を用いたニューラルODEの新たな保存関係を提案する。
これらの保存法則は、損失関数にさらなる正規化項として組み込まれ、モデルの物理的解釈可能性や一般化可能性を高める可能性がある。
これらの保存関係から新たな損失関数を構築し、典型的なモデリングタスクにおける対称性規則化ニューラル・オードの適用性を示す。
論文 参考訳(メタデータ) (2023-11-28T09:27:44Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning [9.36739413306697]
データから動的モデルを学ぶことは、エンジニアリング設計、最適化、予測において重要な役割を果たす。
深層学習を用いて高忠実度力学系に対する低次元埋め込みを同定する。
論文 参考訳(メタデータ) (2021-11-25T10:09:00Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
本研究では、限られた数の人間の実演からそのような動きを学ぶためのアプローチを提案する。
複素運動は安定な力学系のロールアウトとして符号化される。
このアプローチの有効性は、確立されたベンチマーク上での検証と、現実世界のロボットシステム上で収集されたデモによって実証される。
論文 参考訳(メタデータ) (2020-05-27T03:51:57Z) - Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control [14.24939133094439]
物理系の力学を推論できるディープラーニングフレームワークであるSymlectic ODE-Net(SymODEN)を紹介する。
特に、ハミルトン力学を制御して、基礎となる力学を透過的に学習する。
このフレームワークは、物理的システムに対して解釈可能で物理的に一貫性のあるモデルを提供することで、モデルベースの制御戦略を合成する新たな可能性を開く。
論文 参考訳(メタデータ) (2019-09-26T13:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。