Ultrasound Liver Fibrosis Diagnosis using Multi-indicator guided Deep
Neural Networks
- URL: http://arxiv.org/abs/2009.04924v1
- Date: Thu, 10 Sep 2020 15:05:45 GMT
- Title: Ultrasound Liver Fibrosis Diagnosis using Multi-indicator guided Deep
Neural Networks
- Authors: Jiali Liu, Wenxuan Wang, Tianyao Guan, Ningbo Zhao, Xiaoguang Han, and
Zhen Li
- Abstract summary: In this paper, a deep learning framework is presented for automatically liver fibrosis prediction.
An indicator-guided learning mechanism is proposed to ease the training of the proposed model.
As demonstrated in the experimental results, our proposed model shows its effectiveness by achieving the state-of-the-art performance.
- Score: 19.99616501569648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate analysis of the fibrosis stage plays very important roles in
follow-up of patients with chronic hepatitis B infection. In this paper, a deep
learning framework is presented for automatically liver fibrosis prediction. On
contrary of previous works, our approach can take use of the information
provided by multiple ultrasound images. An indicator-guided learning mechanism
is further proposed to ease the training of the proposed model. This follows
the workflow of clinical diagnosis and make the prediction procedure
interpretable. To support the training, a dataset is well-collected which
contains the ultrasound videos/images, indicators and labels of 229 patients.
As demonstrated in the experimental results, our proposed model shows its
effectiveness by achieving the state-of-the-art performance, specifically, the
accuracy is 65.6%(20% higher than previous best).
Related papers
- Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
We propose a two-stage deep learning framework for real-time guidewire segmentation and tracking.
In the first stage, a Yolov5 detector is trained, using the original X-ray images as well as synthetic ones, to output the bounding boxes of possible target guidewires.
In the second stage, a novel and efficient network is proposed to segment the guidewire in each detected bounding box.
arXiv Detail & Related papers (2024-04-12T20:39:19Z) - Towards Enhanced Analysis of Lung Cancer Lesions in EBUS-TBNA -- A Semi-Supervised Video Object Detection Method [0.0]
This study aims to establish a computer-aided diagnostic system for lung lesions using endobronchial ultrasound (EBUS)
Previous research has lacked the application of object detection models to EBUS-TBNA.
arXiv Detail & Related papers (2024-04-02T13:23:21Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Graph-based multimodal multi-lesion DLBCL treatment response prediction
from PET images [0.0]
After diagnosis, the number of nonresponding patients to standard front-line therapy remains significant (30-40%)
This work aims to develop a computer-aided approach to identify high-risk patients requiring adapted treatment.
We propose a method based on recent graph neural networks that combine imaging information from multiple lesions.
arXiv Detail & Related papers (2023-10-25T08:16:45Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Exploring the Utility of Self-Supervised Pretraining Strategies for the
Detection of Absent Lung Sliding in M-Mode Lung Ultrasound [72.39040113126462]
Self-supervised pretraining has been observed to improve performance in supervised learning tasks in medical imaging.
This study investigates the utility of self-supervised pretraining prior to supervised conducting fine-tuning for the downstream task of lung sliding classification in M-mode lung ultrasound images.
arXiv Detail & Related papers (2023-04-05T20:01:59Z) - Interpretable and intervenable ultrasonography-based machine learning
models for pediatric appendicitis [8.083060080133842]
Appendicitis is among the most frequent reasons for pediatric abdominal surgeries.
Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data.
We present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images.
arXiv Detail & Related papers (2023-02-28T10:08:11Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - A causal learning framework for the analysis and interpretation of
COVID-19 clinical data [7.256237785391623]
The workflow consists in a multi-step approach that goes from identifying the main causes of patient's outcome through BSL.
We evaluate our approach on a feature-rich COVID-19 dataset, showing that the proposed framework provides a schematic overview of the multi-factorial processes that jointly contribute to the outcome.
Our approach yields to a highly interpretable tool correctly predicting the outcome of 85% of subjects based exclusively on 3 features.
arXiv Detail & Related papers (2021-05-14T15:58:18Z) - Multi-Modal Active Learning for Automatic Liver Fibrosis Diagnosis based
on Ultrasound Shear Wave Elastography [13.13249599000645]
Noninvasive diagnosis like ultrasound (US) imaging plays a very important role in automatic liver fibrosis diagnosis (ALFD)
Due to the noisy data, expensive annotations of US images, the application of Artificial Intelligence (AI) assisting approaches encounters a bottleneck.
In this work, we innovatively propose a multi-modal fusion network with active learning (MMFN-AL) for ALFD to exploit the information of multiple modalities.
arXiv Detail & Related papers (2020-11-02T03:05:24Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.