論文の概要: P-CRITICAL: A Reservoir Autoregulation Plasticity Rule for Neuromorphic
Hardware
- arxiv url: http://arxiv.org/abs/2009.05593v1
- Date: Fri, 11 Sep 2020 18:13:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 21:05:35.030233
- Title: P-CRITICAL: A Reservoir Autoregulation Plasticity Rule for Neuromorphic
Hardware
- Title(参考訳): P-CRITICAL:ニューロモルフィックハードウェアのための貯留層自己規制塑性規則
- Authors: Ismael Balafrej and Jean Rouat
- Abstract要約: 繰り返し発生する人工ニューラルネットワーク上のバックプロパゲーションアルゴリズムは、時間とともに蓄積された状態の展開を必要とする。
自動貯水池調整のためのP-CRITICALという新しい局所塑性則を提案する。
パラメータをチューニングすることなく、様々なモーダルからくるタスクの性能改善を観察する。
- 参考スコア(独自算出の注目度): 4.416484585765027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backpropagation algorithms on recurrent artificial neural networks require an
unfolding of accumulated states over time. These states must be kept in memory
for an undefined period of time which is task-dependent. This paper uses the
reservoir computing paradigm where an untrained recurrent neural network layer
is used as a preprocessor stage to learn temporal and limited data. These
so-called reservoirs require either extensive fine-tuning or neuroplasticity
with unsupervised learning rules. We propose a new local plasticity rule named
P-CRITICAL designed for automatic reservoir tuning that translates well to
Intel's Loihi research chip, a recent neuromorphic processor. We compare our
approach on well-known datasets from the machine learning community while using
a spiking neuronal architecture. We observe an improved performance on tasks
coming from various modalities without the need to tune parameters. Such
algorithms could be a key to end-to-end energy-efficient neuromorphic-based
machine learning on edge devices.
- Abstract(参考訳): 繰り返し発生する人工ニューラルネットワーク上のバックプロパゲーションアルゴリズムは、時間とともに蓄積された状態の展開を必要とする。
これらの状態はタスクに依存しない未定義の期間メモリに保持されなければならない。
本稿では,未学習のリカレントニューラルネットワーク層をプリプロセッサステージとして使用するリザーバコンピューティングパラダイムを用いて,時間的・限定的なデータを学習する。
これらのいわゆる貯水池は、教師なしの学習規則で広範囲な微調整や神経可塑性を必要とする。
我々は,最近のニューロモルフィックプロセッサであるIntelのLoihi研究チップによく翻訳される自動貯水池チューニングのために設計されたP-CRITICALという新しい局所塑性規則を提案する。
我々は、スパイク神経アーキテクチャを用いて、機械学習コミュニティからよく知られたデータセットに対するアプローチを比較した。
パラメータをチューニングすることなく、様々なモーダルからくるタスクの性能改善を観察する。
このようなアルゴリズムは、エッジデバイス上でのエネルギー効率の高いニューロモルフィックベースの機械学習の鍵となるかもしれない。
関連論文リスト
- SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - Neuromorphic analog circuits for robust on-chip always-on learning in
spiking neural networks [1.9809266426888898]
混合信号ニューロモルフィックシステムは、極端コンピューティングタスクを解決するための有望なソリューションである。
彼らのスパイクニューラルネットワーク回路は、連続的にセンサーデータをオンラインに処理するために最適化されている。
我々は,短期的アナログ力学と長期的三状態離散化機構を備えたオンチップ学習回路を設計する。
論文 参考訳(メタデータ) (2023-07-12T11:14:25Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
イベントベース3要素局所塑性(ETLP)の計算複雑性に明らかな優位性を有する精度の競争性能を示す。
また, 局所的可塑性を用いた場合, スパイキングニューロンの閾値適応, 繰り返しトポロジーは, 時間的構造が豊富な時間的パターンを学習するために必要であることを示した。
論文 参考訳(メタデータ) (2023-01-19T19:45:42Z) - Sequence learning in a spiking neuronal network with memristive synapses [0.0]
脳計算の中心にある中核的な概念は、シーケンス学習と予測である。
ニューロモルフィックハードウェアは、脳が情報を処理する方法をエミュレートし、ニューロンとシナプスを直接物理的基質にマッピングする。
シークエンス学習モデルにおける生物学的シナプスの代替としてReRAMデバイスを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2022-11-29T21:07:23Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - Deep Metric Learning with Locality Sensitive Angular Loss for
Self-Correcting Source Separation of Neural Spiking Signals [77.34726150561087]
本稿では, 深層学習に基づく手法を提案し, 自動掃除とロバスト分離フィルタの必要性に対処する。
本手法は, ソース分離した高密度表面筋電図記録に基づいて, 人工的に劣化したラベルセットを用いて検証する。
このアプローチにより、ニューラルネットワークは、信号のラベル付けの不完全な方法を使用して、神経生理学的時系列を正確に復号することができる。
論文 参考訳(メタデータ) (2021-10-13T21:51:56Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - The Backpropagation Algorithm Implemented on Spiking Neuromorphic
Hardware [4.3310896118860445]
本稿ではパルスゲートの動的情報調整と処理に基づくニューロモルフィック・スパイクバックプロパゲーションアルゴリズムを提案する。
MNISTデータセットから桁の分類を学習する3層回路の実証を実証する。
論文 参考訳(メタデータ) (2021-06-13T15:56:40Z) - Reservoir Stack Machines [77.12475691708838]
メモリ拡張ニューラルネットワークは、情報ストレージを必要とするタスクをサポートするために、明示的なメモリを備えたリカレントニューラルネットワークを備える。
本研究では,全ての決定論的文脈自由言語を確実に認識できるモデルである貯水池スタックマシンを導入する。
以上の結果から, 貯水池スタックマシンは, 訓練データよりも長い試験シーケンスでもゼロ誤差を達成できることがわかった。
論文 参考訳(メタデータ) (2021-05-04T16:50:40Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
複雑な空間時間パターンを学習するためにSNNを訓練できるLeaky IntegrateとFireニューロンの効率的なトレーニングアルゴリズムを導出する。
我々は,ニューロンとシナプスのメムリスタに基づくネットワークのためのCMOS回路実装を開発した。
論文 参考訳(メタデータ) (2021-04-21T18:23:31Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。