論文の概要: Asking Complex Questions with Multi-hop Answer-focused Reasoning
- arxiv url: http://arxiv.org/abs/2009.07402v1
- Date: Wed, 16 Sep 2020 00:30:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 23:01:36.745819
- Title: Asking Complex Questions with Multi-hop Answer-focused Reasoning
- Title(参考訳): マルチホップ回答型推論による複雑な質問
- Authors: Xiyao Ma, Qile Zhu, Yanlin Zhou, Xiaolin Li, Dapeng Wu
- Abstract要約: 複雑で意味のある質問を問うマルチホップ質問生成という新しいタスクを提案する。
そこで本研究では,回答中心のエンティティグラフに基づくマルチホップ応答中心の推論を提案する。
- 参考スコア(独自算出の注目度): 16.01240703148773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Asking questions from natural language text has attracted increasing
attention recently, and several schemes have been proposed with promising
results by asking the right question words and copy relevant words from the
input to the question. However, most state-of-the-art methods focus on asking
simple questions involving single-hop relations. In this paper, we propose a
new task called multihop question generation that asks complex and semantically
relevant questions by additionally discovering and modeling the multiple
entities and their semantic relations given a collection of documents and the
corresponding answer 1. To solve the problem, we propose multi-hop
answer-focused reasoning on the grounded answer-centric entity graph to include
different granularity levels of semantic information including the word-level
and document-level semantics of the entities and their semantic relations.
Through extensive experiments on the HOTPOTQA dataset, we demonstrate the
superiority and effectiveness of our proposed model that serves as a baseline
to motivate future work.
- Abstract(参考訳): 近年,自然言語テキストから質問を求めることが注目され,適切な質問語を問うことで有望な結果を得たいくつかのスキームが提案されている。
しかし、最先端の手法のほとんどは、シングルホップ関係に関わる単純な質問に焦点をあてている。
本稿では、文書の集合と対応する回答1を与えられた複数のエンティティとその意味関係を発見しモデル化することにより、複雑かつ意味的に関連する質問を問う、マルチホップ質問生成と呼ばれる新しいタスクを提案する。
そこで本研究では,接地された回答中心のエンティティグラフ上で,単語レベルの意味や文書レベルの意味論,それらの意味関係など,意味情報の粒度レベルが異なるマルチホップの回答中心の推論を提案する。
HOTPOTQAデータセットに関する広範な実験を通じて,提案モデルが今後の作業の動機付けのベースラインとなることの優位性と有効性を示す。
関連論文リスト
- "I Never Said That": A dataset, taxonomy and baselines on response clarity classification [4.16330182801919]
本稿では,応答の明瞭さを検出し分類するタスクを編み出した新しい分類法を提案する。
提案する2段階分類法は,質問に対する回答の明瞭度を,質問に対する情報提供の観点から明らかにする。
ChatGPTと人間のアノテーションを組み合わせて、政治インタビューから個別のQAペアを収集、検証、注釈付けします。
論文 参考訳(メタデータ) (2024-09-20T20:15:06Z) - Explainable Multi-hop Question Generation: An End-to-End Approach without Intermediate Question Labeling [6.635572580071933]
マルチホップ質問生成は、複数の文書に対して多段階の推論を必要とする複雑な質問を生成することを目的としている。
従来の研究では、コンテキスト文書の表現に基づいて質問をデコードするエンド・ツー・エンド・モデルが主流であった。
本稿では,逐次書き直しによる質問の複雑さを増大させるエンドツーエンドの質問書き直しモデルを提案する。
論文 参考訳(メタデータ) (2024-03-31T06:03:54Z) - Qsnail: A Questionnaire Dataset for Sequential Question Generation [76.616068047362]
質問紙作成作業に特化して構築された最初のデータセットについて述べる。
我々はQsnailの実験を行い、その結果、検索モデルと従来の生成モデルが与えられた研究トピックや意図と完全に一致していないことが明らかとなった。
チェーン・オブ・シークレット・プロンプトと微調整による改善にもかかわらず、言語モデルによるアンケートは、人間の手書きのアンケートには及ばない。
論文 参考訳(メタデータ) (2024-02-22T04:14:10Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Exploiting Hybrid Semantics of Relation Paths for Multi-hop Question
Answering Over Knowledge Graphs [31.088325888508137]
本稿では、関係経路のハイブリッドセマンティクスを利用してマルチホップKGQAを改善することを提案する。
関係経路の明示的なテキスト情報と暗黙的なKG構造を,新規な回転・スケールのエンティティリンク予測フレームワークに基づいて統合する。
論文 参考訳(メタデータ) (2022-09-02T08:07:37Z) - Semantic Sentence Composition Reasoning for Multi-Hop Question Answering [1.773120658816994]
マルチホップ質問応答タスクに対する意味文合成推論手法を提案する。
事実文と多段階意味検索の組み合わせにより,本手法はモデル学習や推論において,より包括的な文脈情報を提供することができる。
実験の結果,既存の学習済み言語モデルを組み込んで,QASCタスクにおける既存のSOTA法を約9%向上させることができた。
論文 参考訳(メタデータ) (2022-03-01T00:35:51Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
1,585の自然言語処理論文に関する5,049の質問のデータセットを提示する。
各質問は、対応する論文のタイトルと要約のみを読むNLP実践者によって書かれ、質問は全文に存在する情報を求めます。
他のQAタスクでうまく機能する既存のモデルは、これらの質問に答える上ではうまく機能せず、論文全体から回答する際には、少なくとも27 F1ポイントパフォーマンスが低下します。
論文 参考訳(メタデータ) (2021-05-07T00:12:34Z) - A Graph-guided Multi-round Retrieval Method for Conversational
Open-domain Question Answering [52.041815783025186]
本稿では,会話のターン間の回答間の関係をモデル化するグラフ誘導検索手法を提案する。
また,検索コンテキストが現在の質問理解に与える影響を検討するために,マルチラウンド関連フィードバック手法を導入することを提案する。
論文 参考訳(メタデータ) (2021-04-17T04:39:41Z) - Multi-hop Inference for Question-driven Summarization [39.08269647808958]
本稿では,新しい質問駆動抽象要約手法であるMulti-hop Selective Generator (MSG)を提案する。
MSGは、マルチホップ推論を質問駆動要約に取り入れ、生成した要約の正当化を提供する。
実験結果から,提案手法は2つの非ファクトイドQAデータセット上で常に最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2020-10-08T02:36:39Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z) - Knowledgeable Dialogue Reading Comprehension on Key Turns [84.1784903043884]
MRC(Multi-choice Machine reading comprehension)は、ある項目と質問に対する候補オプションから正しい回答を選択するモデルである。
本研究は,複数回対話を行う対話型MRCに焦点を当てている。
それは2つの課題に悩まされ、答えの選択決定は、最近役に立つコモンセンスをサポートせずに行われ、マルチターンコンテキストは、かなりの無関係な情報を隠蔽する可能性がある。
論文 参考訳(メタデータ) (2020-04-29T07:04:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。