'Less Than One'-Shot Learning: Learning N Classes From M
- URL: http://arxiv.org/abs/2009.08449v1
- Date: Thu, 17 Sep 2020 17:55:29 GMT
- Title: 'Less Than One'-Shot Learning: Learning N Classes From M<N Samples
- Authors: Ilia Sucholutsky, Matthias Schonlau
- Abstract summary: In the few-shot learning setting, a model must learn a new class given only a small number of samples from that class.
We propose the less than one'-shot learning task where models must learn $N$ new classes given only $MN$ examples.
- Score: 13.70633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks require large training sets but suffer from high
computational cost and long training times. Training on much smaller training
sets while maintaining nearly the same accuracy would be very beneficial. In
the few-shot learning setting, a model must learn a new class given only a
small number of samples from that class. One-shot learning is an extreme form
of few-shot learning where the model must learn a new class from a single
example. We propose the `less than one'-shot learning task where models must
learn $N$ new classes given only $M<N$ examples and we show that this is
achievable with the help of soft labels. We use a soft-label generalization of
the k-Nearest Neighbors classifier to explore the intricate decision landscapes
that can be created in the `less than one'-shot learning setting. We analyze
these decision landscapes to derive theoretical lower bounds for separating $N$
classes using $M<N$ soft-label samples and investigate the robustness of the
resulting systems.
Related papers
- Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
arXiv Detail & Related papers (2024-05-23T17:17:27Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
This paper presents one-bit supervision, a novel setting of learning with fewer labels, for image classification.
We propose a multi-stage training paradigm and incorporate negative label suppression into an off-the-shelf semi-supervised learning algorithm.
In multiple benchmarks, the learning efficiency of the proposed approach surpasses that using full-bit, semi-supervised supervision.
arXiv Detail & Related papers (2023-11-26T07:39:00Z) - Continual Learning in Open-vocabulary Classification with Complementary Memory Systems [19.337633598158778]
We introduce a method for flexible and efficient continual learning in open-vocabulary image classification.
We combine predictions from a CLIP zero-shot model and the exemplar-based model, using the zero-shot estimated probability that a sample's class is within the exemplar classes.
We also propose a "tree probe" method, an adaption of lazy learning principles, which enables fast learning from new examples with competitive accuracy to batch-trained linear models.
arXiv Detail & Related papers (2023-07-04T01:47:34Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Multimodality Helps Unimodality: Cross-Modal Few-Shot Learning with Multimodal Models [69.31424345583537]
Humans use cross-modal information to learn new concepts efficiently.
We show that one can indeed build a better $bf visual$ dog classifier by reading about dogs and listening to them bark.
We construct the first (to our knowledge) audiovisual few-shot benchmark and use cross-modal training to improve the performance of both image and audio classification.
arXiv Detail & Related papers (2023-01-16T05:40:42Z) - GMM-IL: Image Classification using Incrementally Learnt, Independent
Probabilistic Models for Small Sample Sizes [0.4511923587827301]
We present a novel two stage architecture which couples visual feature learning with probabilistic models to represent each class.
We outperform a benchmark of an equivalent network with a Softmax head, obtaining increased accuracy for sample sizes smaller than 12 and increased weighted F1 score for 3 imbalanced class profiles.
arXiv Detail & Related papers (2022-12-01T15:19:42Z) - Optimizing Active Learning for Low Annotation Budgets [6.753808772846254]
In deep learning, active learning is usually implemented as an iterative process in which successive deep models are updated via fine tuning.
We tackle this issue by using an approach inspired by transfer learning.
We introduce a novel acquisition function which exploits the iterative nature of AL process to select samples in a more robust fashion.
arXiv Detail & Related papers (2022-01-18T18:53:10Z) - Self-Damaging Contrastive Learning [92.34124578823977]
Unlabeled data in reality is commonly imbalanced and shows a long-tail distribution.
This paper proposes a principled framework called Self-Damaging Contrastive Learning to automatically balance the representation learning without knowing the classes.
Our experiments show that SDCLR significantly improves not only overall accuracies but also balancedness.
arXiv Detail & Related papers (2021-06-06T00:04:49Z) - Few-shot Weakly-Supervised Object Detection via Directional Statistics [55.97230224399744]
We propose a probabilistic multiple instance learning approach for few-shot Common Object Localization (COL) and few-shot Weakly Supervised Object Detection (WSOD)
Our model simultaneously learns the distribution of the novel objects and localizes them via expectation-maximization steps.
Our experiments show that the proposed method, despite being simple, outperforms strong baselines in few-shot COL and WSOD, as well as large-scale WSOD tasks.
arXiv Detail & Related papers (2021-03-25T22:34:16Z) - Few-Shot Learning with Intra-Class Knowledge Transfer [100.87659529592223]
We consider the few-shot classification task with an unbalanced dataset.
Recent works have proposed to solve this task by augmenting the training data of the few-shot classes using generative models.
We propose to leverage the intra-class knowledge from the neighbor many-shot classes with the intuition that neighbor classes share similar statistical information.
arXiv Detail & Related papers (2020-08-22T18:15:38Z) - Auto-Ensemble: An Adaptive Learning Rate Scheduling based Deep Learning
Model Ensembling [11.324407834445422]
This paper proposes Auto-Ensemble (AE) to collect checkpoints of deep learning model and ensemble them automatically.
The advantage of this method is to make the model converge to various local optima by scheduling the learning rate in once training.
arXiv Detail & Related papers (2020-03-25T08:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.