論文の概要: Group Fairness by Probabilistic Modeling with Latent Fair Decisions
- arxiv url: http://arxiv.org/abs/2009.09031v2
- Date: Thu, 17 Dec 2020 00:28:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 02:05:24.558192
- Title: Group Fairness by Probabilistic Modeling with Latent Fair Decisions
- Title(参考訳): 潜在的公平決定を伴う確率的モデリングによる集団公平性
- Authors: YooJung Choi, Meihua Dang, Guy Van den Broeck
- Abstract要約: 本稿では,隠蔽ラベルを表す潜伏変数を明示的にモデル化し,偏りのあるデータから確率分布を学習する。
我々は,学習モデルに一定の依存性を課すことで,人口統計学上の同等性を達成することを目指している。
また、これらの保証を提供するために使用される分布が実際に実世界のデータをキャプチャしている場合にのみ、グループフェアネス保証が有意義であることを示す。
- 参考スコア(独自算出の注目度): 36.20281545470954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning systems are increasingly being used to make impactful
decisions such as loan applications and criminal justice risk assessments, and
as such, ensuring fairness of these systems is critical. This is often
challenging as the labels in the data are biased. This paper studies learning
fair probability distributions from biased data by explicitly modeling a latent
variable that represents a hidden, unbiased label. In particular, we aim to
achieve demographic parity by enforcing certain independencies in the learned
model. We also show that group fairness guarantees are meaningful only if the
distribution used to provide those guarantees indeed captures the real-world
data. In order to closely model the data distribution, we employ probabilistic
circuits, an expressive and tractable probabilistic model, and propose an
algorithm to learn them from incomplete data. We evaluate our approach on a
synthetic dataset in which observed labels indeed come from fair labels but
with added bias, and demonstrate that the fair labels are successfully
retrieved. Moreover, we show on real-world datasets that our approach not only
is a better model than existing methods of how the data was generated but also
achieves competitive accuracy.
- Abstract(参考訳): 機械学習システムは、ローン申請や刑事司法リスクアセスメントなどの影響のある決定にますます使われており、これらのシステムの公正性を保証することが重要である。
データ内のラベルが偏っているため、これはしばしば困難である。
本稿では,隠蔽ラベルを表す潜在変数を明示的にモデル化し,バイアスデータから確率分布を学習する。
特に,学習モデルに一定の不依存性を課すことにより,人口統計学の同等性の実現を目指す。
また、これらの保証を提供するために使用される分布が実際に実世界のデータをキャプチャしている場合にのみ、グループフェアネス保証が有意義であることを示す。
データ分布を密にモデル化するために,表現的かつトラクタブルな確率モデルである確率回路を用い,不完全データから学習するアルゴリズムを提案する。
観測されたラベルが公正なラベルに由来するが、バイアスが増す合成データセットに対するアプローチを評価し、公正なラベルが正常に検索されることを示す。
さらに,実世界のデータセットでは,既存のデータ生成方法よりも優れたモデルであるだけでなく,競合精度も達成できることを示す。
関連論文リスト
- Achievable Fairness on Your Data With Utility Guarantees [16.78730663293352]
機械学習の公平性において、異なるセンシティブなグループ間の格差を最小限に抑えるトレーニングモデルは、しばしば精度を低下させる。
本稿では,各データセットに適合する公平性-正確性トレードオフ曲線を近似する計算効率のよい手法を提案する。
そこで我々は,モデルフェアネスを監査するための堅牢な枠組みを実践者に提供し,評価の不確実性を定量化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-27T00:59:32Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
我々は、モデルの精度に害を与えることなく、グループフェアネスの格差を軽減するモデルを訓練することを目指している。
公正なアクティブな学習アプローチのような現在のデータ取得方法は、通常、アノテートセンシティブな属性を必要とする。
トレーニンググループアノテーションに依存しない抽出可能なアクティブデータサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T07:57:38Z) - Fair Active Learning in Low-Data Regimes [22.349886628823125]
機械学習の応用においては、社会的不平等の持続を避けるために公正性の確保が不可欠である。
本研究では,データスカース環境におけるバイアスの低減と精度向上という課題に対処する。
本稿では,後方サンプリングにインスパイアされた探索手法と,公平な分類サブルーチンを組み合わせた,革新的なアクティブラーニングフレームワークを提案する。
この枠組みは,確率の高い公正制約を満足しつつ,精度を最大化しながら,非常にデータ量の多い状況下で効果的に機能することが実証された。
論文 参考訳(メタデータ) (2023-12-13T23:14:55Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Impossibility results for fair representations [12.483260526189447]
我々は、それを用いて訓練された異なるタスクに対して、分類器の公平性を保証できないことを論じる。
Odds Equalityのようなより洗練された公正の概念は、タスク固有のラベル付け規則を考慮していない表現によって保証されない。
論文 参考訳(メタデータ) (2021-07-07T21:12:55Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Fair Densities via Boosting the Sufficient Statistics of Exponential
Families [72.34223801798422]
フェアネスのためのデータ前処理にブースティングアルゴリズムを導入する。
私たちのアプローチは、最小限の公平性を確保しながら、より良いデータフィッティングへとシフトします。
実世界のデータに結果の質を示す実験結果が提示される。
論文 参考訳(メタデータ) (2020-12-01T00:49:17Z) - Robust Fairness under Covariate Shift [11.151913007808927]
保護グループメンバーシップに関して公正な予測を行うことは、分類アルゴリズムの重要な要件となっている。
本稿では,ターゲット性能の面で最悪のケースに対して頑健な予測値を求める手法を提案する。
論文 参考訳(メタデータ) (2020-10-11T04:42:01Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。