論文の概要: Hybrid quantum-classical unsupervised data clustering based on the
Self-Organizing Feature Map
- arxiv url: http://arxiv.org/abs/2009.09246v2
- Date: Sat, 15 Jul 2023 15:21:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 01:16:34.876334
- Title: Hybrid quantum-classical unsupervised data clustering based on the
Self-Organizing Feature Map
- Title(参考訳): 自己組織化特徴マップに基づくハイブリッド量子古典的教師なしデータクラスタリング
- Authors: Ilia D. Lazarev and Marek Narozniak and Tim Byrnes and Alexey N.
Pyrkov
- Abstract要約: 自己組織化特徴写像を用いた量子支援型教師なしデータクラスタリングのアルゴリズムを提案する。
複数のクラスタでの計算数を削減できることが示されています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised machine learning is one of the main techniques employed in
artificial intelligence. Quantum computers offer opportunities to speed up such
machine learning techniques. Here, we introduce an algorithm for quantum
assisted unsupervised data clustering using the self-organizing feature map, a
type of artificial neural network. We make a proof-of-concept realization of
one of the central components on the IBM Q Experience and show that it allows
us to reduce the number of calculations in a number of clusters. We compare the
results with the classical algorithm on a toy example of unsupervised text
clustering.
- Abstract(参考訳): 教師なし機械学習は、人工知能で使用される主要なテクニックの1つである。
量子コンピュータはそのような機械学習技術を高速化する機会を提供する。
本稿では,ニューラルネットワークの一種である自己組織化特徴写像を用いた量子支援型無教師データクラスタリングのアルゴリズムを提案する。
我々は、IBM Q Experienceにおける中心的なコンポーネントの1つを概念実証として実現し、多数のクラスタにおける計算数を削減できることを示します。
教師なしテキストクラスタリングのおもちゃの例で、結果を古典的なアルゴリズムと比較する。
関連論文リスト
- Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
本稿では,文字列ダイアグラムの観点からハイブリッドアルゴリズムを記述するための公式なフレームワークを開発する。
弦図の特筆すべき特徴は、量子古典的インタフェースに対応する関手ボックスの使用である。
論文 参考訳(メタデータ) (2024-07-04T06:37:16Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Neural Networks for Programming Quantum Annealers [6.531395267592592]
量子機械学習は、古典的なコンピュータで難解な問題を解くなど、人工知能の進歩を可能にする可能性がある。
本研究では、古典的な完全分岐ニューラルネットワークを小さな量子アニールで接続する、類似しているが全く同じではない場合について考察する。
このシステムをシミュレートして、画像や音声認識など、いくつかの一般的なデータセットを学習する。
論文 参考訳(メタデータ) (2023-08-13T16:43:07Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum Semi-Supervised Kernel Learning [4.726777092009554]
本稿では,セミスーパービジョンカーネル支援ベクトルマシンを学習するための量子機械学習アルゴリズムを提案する。
完全教師付き量子LS-SVMと同じスピードアップを維持していることを示す。
論文 参考訳(メタデータ) (2022-04-22T13:39:55Z) - Quantum Self-Supervised Learning [22.953284192004034]
対照的自己監督学習のためのハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
ibmq_paris量子コンピュータ上の見えない画像を分類するために、最良の量子モデルを適用します。
論文 参考訳(メタデータ) (2021-03-26T18:00:00Z) - Adaptive Neuro Fuzzy Networks based on Quantum Subtractive Clustering [5.957580737396458]
本稿では,tskファジィ型と改良された量子サブトラクティブクラスタリングを用いた適応型ニューロファジィネットワークを開発した。
実験結果から, 量子サブトラクティブクラスタリングに基づくAnfisは近似と一般化能力に優れていた。
論文 参考訳(メタデータ) (2021-01-26T20:59:48Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。