論文の概要: Embedding and generation of indoor climbing routes with variational
autoencoder
- arxiv url: http://arxiv.org/abs/2009.13271v1
- Date: Wed, 16 Sep 2020 23:23:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 00:56:43.819178
- Title: Embedding and generation of indoor climbing routes with variational
autoencoder
- Title(参考訳): 可変オートエンコーダを用いた屋内登山経路の埋め込みと生成
- Authors: K. H. Lo
- Abstract要約: 標準化されたトレーニング機器であるMoonBoardにおいて、登山ルートに変分オートエンコーダを用いる。
生成した22の問題は、ユーザレビューのためにMoonboardアプリにアップロードされる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent increase in popularity of indoor climbing allows possible applications
of deep learning algorthms to classify and generate climbing routes. In this
work, we employ a variational autoencoder to climbing routes in a standardized
training apparatus MoonBoard, a well-known training tool within the climbing
community. By sampling the encoded latent space, it is observed that the
algorithm can generate high quality climbing routes. 22 generated problems are
uploaded to the Moonboard app for user review. This algorithm could serve as a
first step to facilitate indoor climbing route setting.
- Abstract(参考訳): 近年,屋内登山の普及により,登山ルートの分類・生成に深層学習アルゴリズムの応用が可能となった。
本研究は,登山コミュニティ内でよく知られたトレーニングツールである標準訓練装置ムーンボードにおいて,登山経路に変分オートエンコーダを用いる。
符号化された潜在空間をサンプリングすることで、アルゴリズムが高品質な登山経路を生成できることが観察される。
生成した22の問題は、ユーザレビューのためにMoonboardアプリにアップロードされる。
このアルゴリズムは、屋内登山ルート設定を容易にする第一歩となる可能性がある。
関連論文リスト
- Board-to-Board: Evaluating Moonboard Grade Prediction Generalization [0.0]
ボルダリング(Bouldering)とは、選手がルートと呼ばれる一組のホールドを使って障害物を登ろうとするスポーツである。
登山者の技術的および物理的特性の変化と、個々のルートの多くのニュアンスにより、グラデーションは難しく、しばしばバイアスのある作業となる。
2016年と2017年と2019年のMoonboardデータセットに、古典的およびディープラーニングのモデリング技術を適用します。
論文 参考訳(メタデータ) (2023-11-21T08:16:01Z) - Bootstrapping Adaptive Human-Machine Interfaces with Offline
Reinforcement Learning [82.91837418721182]
適応インターフェイスは、ユーザがシーケンシャルな意思決定タスクを実行するのに役立つ。
近年のヒューマン・イン・ザ・ループ・機械学習の進歩により、ユーザとの対話によってこのようなシステムが改善されている。
本稿では,生のコマンド信号をアクションにマッピングするインタフェースを訓練するための強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-07T16:52:27Z) - Learning Vision-and-Language Navigation from YouTube Videos [89.1919348607439]
視覚言語ナビゲーション(VLN)は、自然言語命令を用いて現実的な3D環境をナビゲートするために、具体化されたエージェントを必要とする。
YouTubeには大量のハウスツアービデオがあり、豊富なナビゲーション体験とレイアウト情報を提供している。
住宅ツアービデオから合理的な経路指示ペアとエージェントを事前訓練した大規模データセットを作成する。
論文 参考訳(メタデータ) (2023-07-22T05:26:50Z) - Lowering Detection in Sport Climbing Based on Orientation of the Sensor Enhanced Quickdraw [3.9504711818127425]
壁に取り付けられた登山器具に取り付けられた加速度センサを用いてデータを収集するプロトタイプが開発された。
対応するセンサはエネルギー効率が良いように構成されているため、費用と代替の時間消費の観点から実用的になる。
本稿では、ハードウェア仕様、超低電力モードでセンサが測定したデータ、異なる経路におけるセンサの向きパターンを検出し、低電力モードを特定するための教師ありアプローチを開発する。
論文 参考訳(メタデータ) (2023-01-17T15:06:33Z) - Climbing Routes Clustering Using Energy-Efficient Accelerometers
Attached to the Quickdraws [7.47577255773279]
壁に取り付けられた登山器具に取り付けられた加速度センサを用いてデータを収集するプロトタイプが開発された。
対応するセンサはエネルギー効率が良いように構成されているため、費用と代替の時間消費の観点から実用的になる。
本稿では、ハードウェア仕様、超低電力モードでセンサが測定したデータの研究、異なるルートを登る際のデータのパターンの検出、ルートクラスタリングのための教師なしアプローチの開発について述べる。
論文 参考訳(メタデータ) (2022-11-04T19:08:01Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
深層強化学習は、制御されていない環境での学習ポリシーに対する有望なアプローチである。
機械学習アルゴリズムとライブラリの最近の進歩と、慎重に調整されたロボットコントローラを組み合わせることで、現実世界では4分で学習できる。
論文 参考訳(メタデータ) (2022-08-16T17:37:36Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
我々は視覚と受容の相補的な強みを利用して、脚のあるロボットでポイントゴールナビゲーションを実現する。
車輪付きロボット(LoCoBot)のベースラインよりも優れた性能を示す。
また,センサーと計算能力を備えた四足歩行ロボットに,我々のシステムを実環境に展開することも示す。
論文 参考訳(メタデータ) (2021-12-03T18:59:59Z) - Learning High-Speed Flight in the Wild [101.33104268902208]
複雑な自然環境や人工環境を高速で自律的に飛行するエンド・ツー・エンドのアプローチを提案する。
鍵となる原理は、雑音の知覚観測を直接、後退水平方向に無衝突軌道にマッピングすることである。
現実的なセンサノイズをシミュレートすることにより,シミュレーションから現実環境へのゼロショット転送を実現する。
論文 参考訳(メタデータ) (2021-10-11T09:43:11Z) - Recurrent Neural Network for MoonBoard Climbing Route Classification and
Generation [0.0]
BetaMoveは、人間の登山者の手列を模倣するために開発された新しい移動前処理パイプラインである。
我々の等級予測器の精度は人間レベルに近い性能に達する。
私たちのルートジェネレータは、以前の作業と比べてはるかに品質の良い新しいルートを生成します。
論文 参考訳(メタデータ) (2021-02-02T22:38:23Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
基本数学的操作をビルディングブロックとして使うだけで,完全な機械学習アルゴリズムを自動的に発見できることが示される。
汎用的な検索空間を通じて人間のバイアスを大幅に低減する新しいフレームワークを導入することでこれを実証する。
機械学習アルゴリズムをゼロから発見する上で、これらの予備的な成功は、この分野における有望な新しい方向性を示していると信じている。
論文 参考訳(メタデータ) (2020-03-06T19:00:04Z) - augKlimb: Interactive Data-Led Augmentation of Bouldering Training [0.0]
クライミングは人気のあるスポーツであり、特に屋内では、登山者が人工ホールドを使って人工ルートで訓練することができる。
近年,登山にコンピュータ・インタラクションを加える様々な側面が研究されている。
レクリエーションの中間登山者を支援するための軽量ツールの研究のための広大なスペースがある。
論文 参考訳(メタデータ) (2020-01-22T10:26:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。