Double Graph Based Reasoning for Document-level Relation Extraction
- URL: http://arxiv.org/abs/2009.13752v1
- Date: Tue, 29 Sep 2020 03:41:01 GMT
- Title: Double Graph Based Reasoning for Document-level Relation Extraction
- Authors: Shuang Zeng, Runxin Xu, Baobao Chang and Lei Li
- Abstract summary: Document-level relation extraction aims to extract relations among entities within a document.
We propose Graph Aggregation-and-Inference Network (GAIN) featuring double graphs.
Experiments on the public dataset, DocRED, show GAIN achieves a significant performance improvement (2.85 on F1) over the previous state-of-the-art.
- Score: 29.19714611415326
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Document-level relation extraction aims to extract relations among entities
within a document. Different from sentence-level relation extraction, it
requires reasoning over multiple sentences across a document. In this paper, we
propose Graph Aggregation-and-Inference Network (GAIN) featuring double graphs.
GAIN first constructs a heterogeneous mention-level graph (hMG) to model
complex interaction among different mentions across the document. It also
constructs an entity-level graph (EG), based on which we propose a novel path
reasoning mechanism to infer relations between entities. Experiments on the
public dataset, DocRED, show GAIN achieves a significant performance
improvement (2.85 on F1) over the previous state-of-the-art. Our code is
available at https://github.com/DreamInvoker/GAIN .
Related papers
- A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document.
advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents.
We propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper.
arXiv Detail & Related papers (2024-03-12T08:58:07Z) - Joint Entity and Relation Extraction with Span Pruning and Hypergraph
Neural Networks [58.43972540643903]
We propose HyperGraph neural network for ERE ($hgnn$), which is built upon the PL-marker (a state-of-the-art marker-based pipleline model)
To alleviate error propagation,we use a high-recall pruner mechanism to transfer the burden of entity identification and labeling from the NER module to the joint module of our model.
Experiments on three widely used benchmarks for ERE task show significant improvements over the previous state-of-the-art PL-marker.
arXiv Detail & Related papers (2023-10-26T08:36:39Z) - HIORE: Leveraging High-order Interactions for Unified Entity Relation
Extraction [85.80317530027212]
We propose HIORE, a new method for unified entity relation extraction.
The key insight is to leverage the complex association among word pairs, which contains richer information than the first-order word-by-word interactions.
Experiments show that HIORE achieves the state-of-the-art performance on relation extraction and an improvement of 1.11.8 F1 points over the prior best unified model.
arXiv Detail & Related papers (2023-05-07T14:57:42Z) - Document-level Relation Extraction with Cross-sentence Reasoning Graph [14.106582119686635]
Relation extraction (RE) has recently moved from the sentence-level to document-level.
We propose a novel document-level RE model with a GRaph information Aggregation and Cross-sentence Reasoning network (GRACR)
Experimental results show GRACR achieves excellent performance on two public datasets of document-level RE.
arXiv Detail & Related papers (2023-03-07T14:14:12Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
Document-level relation extraction (DocRE) aims to determine the relation between two entities from a document of multiple sentences.
We propose a Sentence Estimation and Focusing (SIEF) framework for DocRE, where we design a sentence importance score and a sentence focusing loss.
Experimental results on two domains show that our SIEF not only improves overall performance, but also makes DocRE models more robust.
arXiv Detail & Related papers (2022-04-27T03:20:07Z) - A Hierarchical Entity Graph Convolutional Network for Relation
Extraction across Documents [29.183245395412705]
We propose cross-document relation extraction, where the two entities of a relation appear in two different documents.
Following this idea, we create a dataset for two-hop relation extraction, where each chain contains exactly two documents.
Our proposed dataset covers a higher number of relations than the publicly available sentence-level datasets.
arXiv Detail & Related papers (2021-08-21T12:33:50Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
arXiv Detail & Related papers (2021-05-25T16:20:48Z) - Mention-centered Graph Neural Network for Document-level Relation
Extraction [2.724649366608364]
We build cross-sentence dependencies by inferring compositional relations between inter-sentence mentions.
Experiments show the connections between different mentions are crucial to document-level relation extraction.
arXiv Detail & Related papers (2021-03-15T08:19:44Z) - Coarse-to-Fine Entity Representations for Document-level Relation
Extraction [28.39444850200523]
Document-level Relation Extraction (RE) requires extracting relations expressed within and across sentences.
Recent works show that graph-based methods, usually constructing a document-level graph that captures document-aware interactions, can obtain useful entity representations.
We propose the textbfCoarse-to-textbfFine textbfEntity textbfRepresentation model (textbfCFER) that adopts a coarse-to-fine strategy.
arXiv Detail & Related papers (2020-12-04T10:18:59Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
Cross-sentence relations are a crucial step in extractive document summarization.
We present a graph-based neural network for extractive summarization (HeterSumGraph)
We introduce different types of nodes into graph-based neural networks for extractive document summarization.
arXiv Detail & Related papers (2020-04-26T14:38:11Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
We propose a novel Context-Aware Graph (CAG) neural network.
Each node in the graph corresponds to a joint semantic feature, including both object-based (visual) and history-related (textual) context representations.
arXiv Detail & Related papers (2020-04-05T13:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.