Lowering Helstrom Bound with non-standard coherent states
- URL: http://arxiv.org/abs/2010.00171v1
- Date: Thu, 1 Oct 2020 01:51:58 GMT
- Title: Lowering Helstrom Bound with non-standard coherent states
- Authors: Evaldo M. F. Curado, Sofiane Faci, Jean-Pierre Gazeau and Diego
Noguera
- Abstract summary: We study and compare quantum limits for states which generalize the Glauber-Sudarshan coherent states.
We show that the Helstrom bound can be significantly lowered and even vanish in specific regimes.
- Score: 0.3441021278275805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum information processing, {using a receiver device to differentiate
between two nonorthogonal states leads to a quantum error probability. The
minimum possible error is} known as the Helstrom bound. In this work we study
and compare quantum limits for states which generalize the Glauber-Sudarshan
coherent states, like non-linear, Perelomov, Barut-Girardello, and (modified)
Susskind-Glogower coherent states. For some of these, we show that the Helstrom
bound can be significantly lowered and even vanish in specific regimes.
Related papers
- Quantum entanglement as an extremal Kirkwood-Dirac nonreality [0.0]
We discuss a link between quantum entanglement and the anomalous or nonclassical nonreal values of Kirkwood-Dirac (KD) quasiprobability.
We first construct an entanglement monotone for a pure bipartite state based on the nonreality of the KD quasiprobability.
We then construct a bipartite entanglement monotone for generic quantum states using the convex roof extension.
arXiv Detail & Related papers (2025-01-07T20:53:30Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Teleportation of a qubit using exotic entangled coherent states [0.0]
We study the exotic Landau problem at the classical level where two conserved quantities are derived.
We form entangled coherent states which are Bell-like states labeled quasi-Bell states.
The effect of non-maximality of a quasi-Bell state based quantum channel is investigated in the context of a teleportation of a qubit.
arXiv Detail & Related papers (2024-04-03T12:03:38Z) - Detecting entanglement of unknown states by violating the
Clauser-Horne-Shimony-Holt inequality [0.0]
Entangled states play a fundamental role in Quantum Mechanics and are at the core of many contemporary applications.
We propose a method to detect the entanglement of unknown two-qubit quantum states.
arXiv Detail & Related papers (2023-01-31T23:49:55Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Reverse quantum speed limit and minimum Hilbert space norm [0.07614628596146598]
The reverse quantum speed limit (RQSL) gives an upper limit to the time for evolution between initial and final quantum states.
We show that, in conjunction with the existence of a minimum time scale, the RQSL implies a lower limit to the norm of the change in a quantum state.
arXiv Detail & Related papers (2021-10-04T12:23:21Z) - Separability and entanglement in superpositions of quantum states [0.0]
We study the superpositions of a pure entangled state and a pure product state, when the amplitudes corresponding to the states appearing in any superposition are nonzero.
All such superpositions produce only entangled states if the initial entangled state has Schmidt rank three or higher.
We find that conditional inseparability of superpositions help in identifying strategies for conclusive local discrimination of shared quantum ensembles.
arXiv Detail & Related papers (2021-08-04T19:48:29Z) - Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode
states [0.0]
Correlations of two-party $(N, textvs,1)$-mode states are examined by using the variances of a pair of suitable EPR-like observables.
The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability.
arXiv Detail & Related papers (2021-07-02T13:11:00Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum Discrimination of Two Noisy Displaced Number States [68.2727599930504]
We first consider the quantum discrimination of two noiseless displaced number states.
We then address the problem of discriminating between two noisy displaced number states.
arXiv Detail & Related papers (2020-12-09T16:56:16Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.