Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye
Fundus Images
- URL: http://arxiv.org/abs/2010.00291v1
- Date: Thu, 1 Oct 2020 10:42:06 GMT
- Title: Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye
Fundus Images
- Authors: Adrian Galdran, Jos\'e Dolz, Hadi Chakor, Herv\'e Lombaert, Ismail Ben
Ayed
- Abstract summary: We propose a straightforward approach to enforce the constraint for the task of predicting Diabetic Retinopathy (DR) severity from eye fundus images.
We expand standard classification losses with an extra term that acts as a regularizer.
We show how to adapt our method to the modelling of label noise in each of the sub-problems associated to DR grading.
- Score: 20.480034690570196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assessing the degree of disease severity in biomedical images is a task
similar to standard classification but constrained by an underlying structure
in the label space. Such a structure reflects the monotonic relationship
between different disease grades. In this paper, we propose a straightforward
approach to enforce this constraint for the task of predicting Diabetic
Retinopathy (DR) severity from eye fundus images based on the well-known notion
of Cost-Sensitive classification. We expand standard classification losses with
an extra term that acts as a regularizer, imposing greater penalties on
predicted grades when they are farther away from the true grade associated to a
particular image. Furthermore, we show how to adapt our method to the modelling
of label noise in each of the sub-problems associated to DR grading, an
approach we refer to as Atomic Sub-Task modeling. This yields models that can
implicitly take into account the inherent noise present in DR grade
annotations. Our experimental analysis on several public datasets reveals that,
when a standard Convolutional Neural Network is trained using this simple
strategy, improvements of 3-5\% of quadratic-weighted kappa scores can be
achieved at a negligible computational cost. Code to reproduce our results is
released at https://github.com/agaldran/cost_sensitive_loss_classification.
Related papers
- Divergent Domains, Convergent Grading: Enhancing Generalization in Diabetic Retinopathy Grading [8.59772105902647]
Diabetic Retinopathy (DR) constitutes 5% of global blindness cases.
We introduce a novel deep learning method for achieving domain generalization (DG) in DR grading.
Our method demonstrates significant improvements over the strong Empirical Risk Minimization baseline.
arXiv Detail & Related papers (2024-11-04T21:09:24Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Categorical Relation-Preserving Contrastive Knowledge Distillation for
Medical Image Classification [75.27973258196934]
We propose a novel Categorical Relation-preserving Contrastive Knowledge Distillation (CRCKD) algorithm, which takes the commonly used mean-teacher model as the supervisor.
With this regularization, the feature distribution of the student model shows higher intra-class similarity and inter-class variance.
With the contribution of the CCD and CRP, our CRCKD algorithm can distill the relational knowledge more comprehensively.
arXiv Detail & Related papers (2021-07-07T13:56:38Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Consistent Posterior Distributions under Vessel-Mixing: A Regularization
for Cross-Domain Retinal Artery/Vein Classification [30.30848090813239]
We propose a vessel-mixing based consistency regularization framework, for cross-domain learning in retinal A/V classification.
Our method achieves the state-of-the-art cross-domain performance, which is also close to the upper bound obtained by fully supervised learning on target domain.
arXiv Detail & Related papers (2021-03-16T14:18:35Z) - Improving Medical Image Classification with Label Noise Using
Dual-uncertainty Estimation [72.0276067144762]
We discuss and define the two common types of label noise in medical images.
We propose an uncertainty estimation-based framework to handle these two label noise amid the medical image classification task.
arXiv Detail & Related papers (2021-02-28T14:56:45Z) - Robust Collaborative Learning of Patch-level and Image-level Annotations
for Diabetic Retinopathy Grading from Fundus Image [33.904136933213735]
We present a robust framework, which collaboratively utilizes patch-level and image-level annotations, for DR severity grading.
By an end-to-end optimization, this framework can bi-directionally exchange the fine-grained lesion and image-level grade information.
The proposed framework shows better performance than the recent state-of-the-art algorithms and three clinical ophthalmologists with over nine years of experience.
arXiv Detail & Related papers (2020-08-03T02:17:42Z) - Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis
and Uncertainty Quantification [0.0]
Diabetic Retinopathy (DR) is one of the microvascular complications of Diabetes Mellitus, which remains one of the leading causes of blindness worldwide.
Computational models based on Conal Neural Networks represent the state of the art for the automatic detection of DR using eye fundus images.
In this paper, a hybrid Deep Learning-Gaussian process method for DR diagnosis and uncertainty quantification is presented.
arXiv Detail & Related papers (2020-07-29T04:10:42Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.