論文の概要: Are Artificial Dendrites useful in NeuroEvolution?
- arxiv url: http://arxiv.org/abs/2010.00918v2
- Date: Tue, 23 Feb 2021 12:42:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 01:05:50.271546
- Title: Are Artificial Dendrites useful in NeuroEvolution?
- Title(参考訳): 人工樹状突起は神経進化に有用か?
- Authors: Larry Bull
- Abstract要約: この手紙は、単純なデンドライトにインスパイアされたメカニズムを神経進化に組み込む効果を探求している。
接続上の別々のデンドライト活性化しきい値の現象は、進化過程の下で現れる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The significant role of dendritic processing within neuronal networks has
become increasingly clear. This letter explores the effects of including a
simple dendrite-inspired mechanism into neuroevolution. The phenomenon of
separate dendrite activation thresholds on connections is allowed to emerge
under an evolutionary process. It is shown how such processing can be
positively selected for, particularly for connections between the hidden and
output layer, and increases performance.
- Abstract(参考訳): 神経ネットワークにおける樹状突起処理の役割はますます明確になっている。
この手紙は、単純なデンドライトにインスパイアされたメカニズムを神経進化に組み込む効果を探求している。
接続上のデンドライトの活性化しきい値が分離される現象は、進化過程下で生じる。
このような処理は,特に隠蔽層と出力層との間の接続に対して肯定的に選択され,性能が向上することを示す。
関連論文リスト
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - A Goal-Driven Approach to Systems Neuroscience [2.6451153531057985]
人間と動物は、動的環境において様々な興味深い行動を示す。
私たちの脳が、こうした行動を可能にするために、どのようにしてこの密集した感覚情報を積極的に再構築するかは不明です。
我々は、ニューラルサーキットの統一構造モデルと機能モデルを生み出すことを約束する新しい解釈可能性の定義を提供する。
論文 参考訳(メタデータ) (2023-11-05T16:37:53Z) - A versatile circuit for emulating active biological dendrites applied to
sound localisation and neuron imitation [0.0]
我々は,利得を示し,遅延を導入し,統合を行うデンドライトのセグメントをエミュレートする汎用回路を導入する。
また、デンドライトが破裂するニューロンを形成できることもわかりました。
この重要な発見は、デンドライト回路のみからなるニューラルネットワークを作る可能性を示唆している。
論文 参考訳(メタデータ) (2023-10-25T09:42:24Z) - Mitigating Communication Costs in Neural Networks: The Role of Dendritic
Nonlinearity [28.243134476634125]
本研究では,ニューラルネットワークにおける非線形デンドライトの重要性について検討した。
その結果,樹状構造の統合はモデル容量と性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-06-21T00:28:20Z) - Artificial Dendritic Computation: The case for dendrites in neuromorphic
circuits [0.0]
樹状体の計算を複製する動機について検討し,今後の試みを導くための枠組みを提案する。
我々は,BiLSTMニューラルネットワークの性能に及ぼすデンドライトの影響を評価し,デンドライト前処理がしきい値性能に必要なネットワークサイズを減らすことを発見した。
論文 参考訳(メタデータ) (2023-04-03T13:15:32Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - The distribution of inhibitory neurons in the C. elegans connectome
facilitates self-optimization of coordinated neural activity [78.15296214629433]
線虫Caenorhabditis elegansの神経系は、昆虫のサイズが小さいにもかかわらず著しく複雑である。
一般的な課題は、システムレベルでの神経組織と神経活動の関係をよりよく理解することである。
我々は,各ニューロンの神経伝達物質同定を近似した,C. elegans Connectomeの抽象シミュレーションモデルを実装した。
論文 参考訳(メタデータ) (2020-10-28T23:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。