論文の概要: Collaborative Tracking and Capture of Aerial Object using UAVs
- arxiv url: http://arxiv.org/abs/2010.01588v1
- Date: Sun, 4 Oct 2020 14:23:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 04:16:44.023952
- Title: Collaborative Tracking and Capture of Aerial Object using UAVs
- Title(参考訳): uavを用いた空中物体の協調追跡と捕獲
- Authors: Lima Agnel Tony, Shuvrangshu Jana, Varun V P, Vidyadhara B V,
Mohitvishnu S Gadde, Abhishek Kashyap, Rahul Ravichandran, Debasish Ghose
- Abstract要約: この問題は、Mohammed Bin Zayed International Robotic Challenge 2020のチャレンジ1から動機づけられている。
UAVは視覚フィードバックを利用して、目標を自律的に検出し、接近し、目標を運ぶ車両を邪魔することなく捕獲する。
- 参考スコア(独自算出の注目度): 0.16863755729554883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work details the problem of aerial target capture using multiple UAVs.
This problem is motivated from the challenge 1 of Mohammed Bin Zayed
International Robotic Challenge 2020. The UAVs utilise visual feedback to
autonomously detect target, approach it and capture without disturbing the
vehicle which carries the target. Multi-UAV collaboration improves the
efficiency of the system and increases the chance of capturing the ball
robustly in short span of time. In this paper, the proposed architecture is
validated through simulation in ROS-Gazebo environment and is further
implemented on hardware.
- Abstract(参考訳): 本研究は、複数のUAVを用いた航空目標捕捉の問題について詳述する。
この問題は、Mohammed Bin Zayed International Robotic Challenge 2020のチャレンジ1から動機づけられている。
UAVは視覚フィードバックを利用して、目標を自律的に検出し、接近し、目標を運ぶ車両を邪魔することなく捕獲する。
マルチUAVコラボレーションはシステムの効率を向上し、ボールを短時間でしっかりと捕獲する可能性を高める。
本稿では,ROS-Gazebo環境におけるシミュレーションにより提案アーキテクチャを検証し,さらにハードウェア上で実装する。
関連論文リスト
- UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
航空中継機としての無人航空機(UAV)は、インターネットモノ(IoT)ネットワークの補助として事実上魅力的である。
本研究では,UAV基地局と端末端末装置間のセキュアな通信を支援するために,UAVを活用することを目的とする。
論文 参考訳(メタデータ) (2023-10-03T11:47:01Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
無人航空機(UAV)は輸送、監視、軍事など多くの地域で広く使われている。
従来は、UAVの先行情報が常に提供されていた追跡問題として、このようなアンチUAVタスクを単純化していた。
本稿では,従来のUAV情報を含まない複雑な場面において,UAVの認識を特徴とする新しい実用的対UAV問題を初めて定式化する。
論文 参考訳(メタデータ) (2023-06-27T19:30:23Z) - UAV Obstacle Avoidance by Human-in-the-Loop Reinforcement in Arbitrary
3D Environment [17.531224704021273]
本稿では, 深部強化学習に基づく無人航空機(UAV)の連続制御に着目した。
本稿では,UAVが飛行中の障害物を自動的に回避できる深層強化学習(DRL)法を提案する。
論文 参考訳(メタデータ) (2023-04-07T01:44:05Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication [53.46235596543596]
移動地利用者に対する空対地超信頼性・低遅延通信(URLLC)の問題点について検討する。
グラフアテンション交換ネットワーク(GAXNet)を用いたマルチエージェント深層強化学習フレームワークを提案する。
GAXNetは、最先端のベースラインフレームワークと比較して、0.0000001エラー率で6.5倍のレイテンシを実現している。
論文 参考訳(メタデータ) (2021-05-22T12:43:25Z) - UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-identification [21.48667873335246]
近年のディープラーニング開発により、視覚ベースの対UAVシステムは単一のカメラでUAVを検出し、追跡することができる。
単一のカメラのカバー範囲は限られており、カメラ間のUAVにマッチするマルチカメラ構成が必要である。
我々は,この新興地域での機械学習ソリューションの開発を容易にする,UAV-reIDという新しいUAV再識別データセットを提案する。
論文 参考訳(メタデータ) (2021-04-13T14:13:09Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Federated Learning for Cellular-connected UAVs: Radio Mapping and Path
Planning [2.4366811507669124]
本稿では,UAVの走行時間を最小化し,確率的接続制約を満たすことを保証する。
UAVは異なるミッションを持ち、異なるエリアを飛行するため、収集されたデータはネットワークの接続に関するローカル情報を運ぶ。
最初のステップでは、UAVは環境の停止確率のグローバルモデルを構築します。
第2ステップでは、第1ステップで得られた大域的モデルと高速探索型ランダムツリー(RRT)を用いて、UAVの経路を最適化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-23T14:55:37Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
空のUAVに対して、ユビキタスな3Dコミュニケーションを実現するには、新しい課題だ。
本稿では,UAVの制御可能な移動性を利用して航法・軌道を設計する新しい航法手法を提案する。
そこで我々は,UAVの信号計測を深部Qネットワークのトレーニングに用いるSNARM (Concurrent Navigation and Radio Mapping) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T08:16:14Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
新たな問題は、建物の後ろに隠れている無人小型無人航空機(UAV)を追跡することである。
本稿では,悪意のある標的のリアルタイムかつ高精度な追跡のためのUAVの動的レーダネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。