論文の概要: Model-Free Control of Dynamical Systems with Deep Reservoir Computing
- arxiv url: http://arxiv.org/abs/2010.02285v1
- Date: Mon, 5 Oct 2020 18:59:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 22:41:39.181072
- Title: Model-Free Control of Dynamical Systems with Deep Reservoir Computing
- Title(参考訳): 深部貯留層計算による動的システムのモデルフリー制御
- Authors: Daniel Canaday, Andrew Pomerance, Daniel J Gauthier
- Abstract要約: 本稿では,未知の複雑なシステムに適用可能な非線形制御法を提案する。
我々の手法はシステムに関する事前の知識を必要としないため、モデルフリーである。
貯留層コンピュータは、小さなトレーニングデータセットと驚くほど低いトレーニング時間を必要とするため、制御問題に適している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose and demonstrate a nonlinear control method that can be applied to
unknown, complex systems where the controller is based on a type of artificial
neural network known as a reservoir computer. In contrast to many modern
neural-network-based control techniques, which are robust to system
uncertainties but require a model nonetheless, our technique requires no prior
knowledge of the system and is thus model-free. Further, our approach does not
require an initial system identification step, resulting in a relatively simple
and efficient learning process. Reservoir computers are well-suited to the
control problem because they require small training data sets and remarkably
low training times. By iteratively training and adding layers of reservoir
computers to the controller, a precise and efficient control law is identified
quickly. With examples on both numerical and high-speed experimental systems,
we demonstrate that our approach is capable of controlling highly complex
dynamical systems that display deterministic chaos to nontrivial target
trajectories.
- Abstract(参考訳): 本研究では,制御器がリザーバコンピュータと呼ばれる人工ニューラルネットワークを基盤とする,未知の複雑なシステムに適用可能な非線形制御手法を提案する。
システム不確実性に頑健だがモデルを必要とする、現代のニューラルネットワークベースの制御技術の多くとは対照的に、本手法はシステムの事前知識を必要とせず、モデルフリーである。
さらに,本手法では初期システム識別ステップを必要とせず,比較的単純で効率的な学習プロセスを実現する。
貯留層コンピュータは、小さなトレーニングデータセットと驚くほど低いトレーニング時間を必要とするため、制御問題に適している。
制御器に貯水池コンピュータの層を反復的に訓練して付加することにより、高精度かつ効率的な制御法則を迅速に同定する。
数値実験系と高速実験系の両方において,本手法は,非自明な対象軌道に対して決定論的カオスを示す高度に複雑な力学系を制御できることを実証する。
関連論文リスト
- Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Optimal Exploration for Model-Based RL in Nonlinear Systems [14.540210895533937]
未知の非線形力学系を制御する学習は、強化学習と制御理論の基本的な問題である。
本研究では,タスク依存メトリックにおける不確実性を低減するために,効率よくシステムを探索できるアルゴリズムを開発した。
我々のアルゴリズムは、ポリシー最適化から任意のシステムにおける最適な実験設計への一般的な還元に依存しており、独立した関心を持つ可能性がある。
論文 参考訳(メタデータ) (2023-06-15T15:47:50Z) - A Deep Learning Technique to Control the Non-linear Dynamics of a
Gravitational-wave Interferometer [0.0]
非線形動的制御問題を解くディープラーニング手法を開発した。
LIGOシステムの動作に生じる重要な非線形制御問題に対して,本手法を適用した。
また、1つの現代的なCPUコア上で、高速なサンプリング速度でリアルタイムに実行できる計算効率の良いモデルを開発した。
論文 参考訳(メタデータ) (2023-02-15T19:47:56Z) - Controlling quantum many-body systems using reduced-order modelling [0.0]
本稿では,多体量子システムにおける制御問題のクラスを解くための効率的な手法を提案する。
もともとのサブシステムの「デジタルツイン」と見なされる、そのような縮小順序モデルの力学のシミュレーションは、はるかに効率的である。
この結果は、多体システムの研究、非自明な準粒子特性の探索、および量子コンピューティングデバイスの開発管理ツールに直接応用される。
論文 参考訳(メタデータ) (2022-11-01T13:58:44Z) - The least-control principle for learning at equilibrium [65.2998274413952]
我々は、平衡反復ニューラルネットワーク、深層平衡モデル、メタラーニングを学ぶための新しい原理を提案する。
私たちの結果は、脳がどのように学習するかを明らかにし、幅広い機械学習問題にアプローチする新しい方法を提供します。
論文 参考訳(メタデータ) (2022-07-04T11:27:08Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
機械学習(ML)を活用した,新しい完全データ駆動制御方式を提案する。
最近開発されたMLに基づく複雑なシステムの予測機能により、非線形系は任意の初期状態から来る任意の動的対象状態に留まることが証明された。
必要なデータ量が少なく,柔軟性の高いコントロールスキームを備えることで,工学から医学まで幅広い応用の可能性について簡単に議論する。
論文 参考訳(メタデータ) (2021-02-23T16:58:26Z) - Physical deep learning based on optimal control of dynamical systems [0.0]
本研究では,連続時間力学系の最適制御に基づくパターン認識を行う。
鍵となる例として、光電子遅延システムにダイナミックスに基づく認識アプローチを適用する。
これは、多くの重みパラメータをトレーニングする必要がある従来の多層ニューラルネットワークとは対照的である。
論文 参考訳(メタデータ) (2020-12-16T06:38:01Z) - Neural-iLQR: A Learning-Aided Shooting Method for Trajectory
Optimization [17.25824905485415]
制約のない制御空間上の学習支援シューティング手法であるNeural-iLQRを提案する。
システムモデルにおける不正確さの存在下で、従来のiLQRよりも著しく優れていることが示されている。
論文 参考訳(メタデータ) (2020-11-21T07:17:28Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。