論文の概要: Recurrent babbling: evaluating the acquisition of grammar from limited
input data
- arxiv url: http://arxiv.org/abs/2010.04637v1
- Date: Fri, 9 Oct 2020 15:30:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 05:32:26.688603
- Title: Recurrent babbling: evaluating the acquisition of grammar from limited
input data
- Title(参考訳): リカレントバブリング:限られた入力データから文法の獲得を評価する
- Authors: Ludovica Pannitto and Aur\'elie Herbelot
- Abstract要約: リカレントニューラルネットワーク(Recurrent Neural Networks, RNN)は、生の言語入力から構文の様々な側面を捉えることが示されている。
本稿では,子育て入力の現実的な大きさのサブセットに対して,LSTM(Long Short-Term Memory Network)をトレーニングすることで,この状況を改善する。
- 参考スコア(独自算出の注目度): 0.30458514384586405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent Neural Networks (RNNs) have been shown to capture various aspects
of syntax from raw linguistic input. In most previous experiments, however,
learning happens over unrealistic corpora, which do not reflect the type and
amount of data a child would be exposed to. This paper remedies this state of
affairs by training a Long Short-Term Memory network (LSTM) over a
realistically sized subset of child-directed input. The behaviour of the
network is analysed over time using a novel methodology which consists in
quantifying the level of grammatical abstraction in the model's generated
output (its "babbling"), compared to the language it has been exposed to. We
show that the LSTM indeed abstracts new structuresas learning proceeds.
- Abstract(参考訳): リカレントニューラルネットワーク(Recurrent Neural Networks, RNN)は、生の言語入力から構文の様々な側面を捉えている。
しかし、これまでのほとんどの実験では、学習は非現実的なコーパスの上で行われ、それは子供が露出するデータの種類や量を反映しない。
本稿では,子ども向け入力のリアルサイズのサブセット上で,長期短期記憶ネットワーク(lstm)を訓練することで,この状況を改善する。
ネットワークの振る舞いは時間とともに分析され、モデルが生成したアウトプット("バブリング")の文法的抽象化のレベルを、公開された言語と比較して定量化する新しい方法論を用いている。
LSTMは、学習が進むにつれて、新しい構造を抽象化する。
関連論文リスト
- Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
形式言語理論は、特に認識者に関するものである。
代わりに、非公式な意味でのみ類似したプロキシタスクを使用するのが一般的である。
ニューラルネットワークを文字列のバイナリ分類器として直接訓練し評価することで、このミスマッチを補正する。
論文 参考訳(メタデータ) (2024-11-11T16:33:25Z) - Pixel Sentence Representation Learning [67.4775296225521]
本研究では,視覚表現学習プロセスとして,文レベルのテキスト意味論の学習を概念化する。
タイポスや単語順シャッフルのような視覚的に接地されたテキスト摂動法を採用し、人間の認知パターンに共鳴し、摂動を連続的に認識できるようにする。
我々のアプローチは、大規模に教師なしのトピックアライメントトレーニングと自然言語推論監督によってさらに強化されている。
論文 参考訳(メタデータ) (2024-02-13T02:46:45Z) - A systematic investigation of learnability from single child linguistic input [12.279543223376935]
言語モデル(LM)は言語的に一貫性のあるテキストを生成するのに顕著な能力を示した。
しかし、これらのモデルのトレーニングデータと、子供が受ける言語的入力との間には、大きなギャップがある。
本研究は, 一人の子どもの言語入力のサブセットに基づいて, LMを訓練することに焦点を当てた。
論文 参考訳(メタデータ) (2024-02-12T18:58:58Z) - Evaluating Neural Language Models as Cognitive Models of Language
Acquisition [4.779196219827507]
我々は、ニューラルネットワークモデルの構文能力を評価するための最も顕著なベンチマークは、十分に厳密でないかもしれないと論じる。
小規模データモデリングによる子言語習得を訓練すると、LMは単純なベースラインモデルで容易にマッチングできる。
子どもの言語習得に関する実証的研究と、LMをよりよく結びつけるための提案をまとめて締めくくった。
論文 参考訳(メタデータ) (2023-10-31T00:16:17Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
本稿では,潜在言語埋め込みをモデル化するための量子化ベクトルの利用について検討する。
トレーニングにおいて、潜伏空間上の異なるポリシーを強制することにより、潜伏言語埋め込みを得ることができる。
実験の結果,ベクトル量子化法で構築した音声クローニングシステムは,知覚的評価の点でわずかに劣化していることがわかった。
論文 参考訳(メタデータ) (2021-06-25T07:51:35Z) - Cross-lingual Approach to Abstractive Summarization [0.0]
言語間モデル転送は低リソース言語でうまく適用できる。
深層ニューラルネットワークとシークエンス・トゥ・シークエンスアーキテクチャに基づく事前学習型英語要約モデルを用いた。
対象言語データに異なる比率のモデルを開発し,微調整を行った。
論文 参考訳(メタデータ) (2020-12-08T09:30:38Z) - Multi-timescale Representation Learning in LSTM Language Models [69.98840820213937]
言語モデルは、非常に短いから非常に長いまでの時間スケールで単語間の統計的依存関係を捉えなければならない。
我々は、長期記憶言語モデルにおけるメモリゲーティング機構が、パワーローの減衰を捉えることができるかの理論を導出した。
実験の結果,自然言語で学習したLSTM言語モデルは,この理論分布を近似することがわかった。
論文 参考訳(メタデータ) (2020-09-27T02:13:38Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z) - An Evaluation of Recent Neural Sequence Tagging Models in Turkish Named
Entity Recognition [5.161531917413708]
本研究では,条件付きランダムフィールド層を有する変圧器ベースネットワークを提案する。
本研究は,移動学習が形態的に豊かな言語処理に与える影響を定量化する文献に寄与する。
論文 参考訳(メタデータ) (2020-05-14T06:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。