論文の概要: Inferring Causal Direction from Observational Data: A Complexity
Approach
- arxiv url: http://arxiv.org/abs/2010.05635v1
- Date: Mon, 12 Oct 2020 12:10:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 05:19:57.871532
- Title: Inferring Causal Direction from Observational Data: A Complexity
Approach
- Title(参考訳): 観測データから因果方向を推定する:複雑性アプローチ
- Authors: Nikolaos Nikolaou and Konstantinos Sechidis
- Abstract要約: 離散確率変数と連続確率変数のペアにおける原因と効果を区別するためのいくつかの基準を提案する。
本研究では,幅広い因果的メカニズムとノイズの種類に基づいて生成した合成データの基準値の精度を示す。
- 参考スコア(独自算出の注目度): 0.3553493344868413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: At the heart of causal structure learning from observational data lies a
deceivingly simple question: given two statistically dependent random
variables, which one has a causal effect on the other? This is impossible to
answer using statistical dependence testing alone and requires that we make
additional assumptions. We propose several fast and simple criteria for
distinguishing cause and effect in pairs of discrete or continuous random
variables. The intuition behind them is that predicting the effect variable
using the cause variable should be `simpler' than the reverse -- different
notions of `simplicity' giving rise to different criteria. We demonstrate the
accuracy of the criteria on synthetic data generated under a broad family of
causal mechanisms and types of noise.
- Abstract(参考訳): 観測データから学ぶ因果構造の中心は、非常に単純な質問である:2つの統計的に依存する確率変数が与えられたとき、一方は他方に因果効果を持つか?
これは統計的依存テストだけでは答えられず、追加の仮定が必要である。
離散確率変数と連続確率変数のペアにおいて、原因と効果を区別するための高速かつ簡単な基準を提案する。
その背後にある直感は、因果変数を用いた効果変数の予測は逆よりも「単純」でなければならないということである。
本研究では,幅広い因果的メカニズムとノイズの種類に基づいて生成した合成データの基準値の精度を示す。
関連論文リスト
- Score matching through the roof: linear, nonlinear, and latent variables causal discovery [18.46845413928147]
観測データからの因果発見は、非常に有望である。
既存の手法は根底にある因果構造に関する強い仮定に依存している。
線形・非線形・潜在変数モデルにまたがる因果探索のためのフレキシブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-26T14:09:06Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - Structural restrictions in local causal discovery: identifying direct causes of a target variable [0.9208007322096533]
観測的関節分布から対象変数の直接的な原因の集合を学ぶことは、科学の基本的な問題である。
ここでは、完全なDAGではなく、1つのターゲット変数の直接的な原因を特定することにのみ関心があります。
これにより、識別可能性の仮定を緩和し、より高速で堅牢なアルゴリズムを開発することができる。
論文 参考訳(メタデータ) (2023-07-29T18:31:35Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Reinterpreting causal discovery as the task of predicting unobserved
joint statistics [15.088547731564782]
我々は因果発見が、観測されていない関節分布の性質を推測するのに役立つと論じている。
入力が変数のサブセットであり、ラベルがそのサブセットの統計的性質である学習シナリオを定義する。
論文 参考訳(メタデータ) (2023-05-11T15:30:54Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
観測データからの因果発見は、正確な解を常に特定できない難しい課題である。
そこで本研究では,変数の性質に基づいた因果関係を制約する仮説を新たに提案する。
論文 参考訳(メタデータ) (2021-07-22T14:23:08Z) - Counterfactual Invariance to Spurious Correlations: Why and How to Pass
Stress Tests [87.60900567941428]
素早い相関」とは、アナリストが重要とすべきでないと考える入力データのある側面に対するモデルの依存である。
機械学習では、これらにはノウ・イ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ」という特徴がある。
因果推論ツールを用いたストレステストについて検討した。
論文 参考訳(メタデータ) (2021-05-31T14:39:38Z) - Latent Instrumental Variables as Priors in Causal Inference based on
Independence of Cause and Mechanism [2.28438857884398]
因果図形構造における潜時楽器変数や隠蔽共通原因などの潜時変数の役割について検討する。
2つの変数間の因果関係を推論する新しいアルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-07-17T08:18:19Z) - Stable Prediction via Leveraging Seed Variable [73.9770220107874]
従来の機械学習手法は、非因果変数によって誘導されるトレーニングデータにおいて、微妙に刺激的な相関を利用して予測する。
本研究では, 条件付き独立性テストに基づくアルゴリズムを提案し, 種子変数を先行変数とする因果変数を分離し, 安定な予測に採用する。
我々のアルゴリズムは、安定した予測のための最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-06-09T06:56:31Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
変分オートエンコーダ(VAE)の枠組みは、観測から独立した因子をアンタングルするために一般的に用いられる。
本稿では, 因果内因性因子を因果内因性因子に変換する因果層を含むVOEベースの新しいフレームワークCausalVAEを提案する。
その結果、CausalVAEが学習した因果表現は意味論的に解釈可能であり、DAG(Directed Acyclic Graph)としての因果関係は精度良く同定された。
論文 参考訳(メタデータ) (2020-04-18T20:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。