論文の概要: PointManifold: Using Manifold Learning for Point Cloud Classification
- arxiv url: http://arxiv.org/abs/2010.07215v2
- Date: Fri, 16 Oct 2020 06:32:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 13:47:04.116009
- Title: PointManifold: Using Manifold Learning for Point Cloud Classification
- Title(参考訳): PointManifold: ポイントクラウド分類にManifold Learningを使用する
- Authors: Dinghao Yang, Wei Gao
- Abstract要約: 本稿では,グラフニューラルネットワークと多様体学習に基づく点雲分類手法を提案する。
本稿では,平面上の連続性を考慮し,点雲の特徴を埋め込むために,多様体学習アルゴリズムを用いる。
実験により、提案した点雲分類法は90.2%の平均クラス精度(mA)と93.2%の総合クラス精度(oA)が得られることが示された。
- 参考スコア(独自算出の注目度): 5.705680763604835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a point cloud classification method based on graph
neural network and manifold learning. Different from the conventional point
cloud analysis methods, this paper uses manifold learning algorithms to embed
point cloud features for better considering the geometric continuity on the
surface. Then, the nature of point cloud can be acquired in low dimensional
space, and after being concatenated with features in the original
three-dimensional (3D)space, both the capability of feature representation and
the classification network performance can be improved. We pro-pose two
manifold learning modules, where one is based on locally linear embedding
algorithm, and the other is a non-linear projection method based on neural
network architecture. Both of them can obtain better performances than the
state-of-the-art baseline. Afterwards, the graph model is constructed by using
the k nearest neighbors algorithm, where the edge features are effectively
aggregated for the implementation of point cloud classification. Experiments
show that the proposed point cloud classification methods obtain the mean class
accuracy (mA) of 90.2% and the overall accuracy (oA)of 93.2%, which reach
competitive performances compared with the existing state-of-the-art related
methods.
- Abstract(参考訳): 本稿では,グラフニューラルネットワークと多様体学習に基づく点雲分類手法を提案する。
本稿では,従来の点雲解析法と異なり,平面上の幾何学的連続性を考慮した点雲特徴の埋め込みに多様体学習アルゴリズムを用いる。
そして、低次元空間において点雲の性質を把握でき、元の3次元空間の特徴と連結された後、特徴表現能力と分類ネットワーク性能の両方を改善することができる。
そこで我々は,局所線形埋め込みアルゴリズムに基づく2つの多様体学習モジュールを提案し,もう1つはニューラルネットワークアーキテクチャに基づく非線形投影法を提案する。
どちらも最先端のベースラインよりも優れたパフォーマンスを得ることができる。
その後、グラフモデルはk近傍のアルゴリズムを用いて構築され、エッジ機能はポイントクラウド分類の実装のために効果的に集約される。
実験により,提案手法は平均クラス精度 (ma) が90.2%, 全体精度 (oa) が93.2%となり, 既存手法と比較して性能が向上した。
関連論文リスト
- Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - Efficient Graph Field Integrators Meet Point Clouds [59.27295475120132]
点雲を符号化するグラフ上での効率的な場積分のためのアルゴリズムを2種類提案する。
第1のクラスであるSeparatorFactorization(SF)は、ポイントメッシュグラフの有界属を利用するが、第2のクラスであるRFDiffusion(RFD)は、ポイントクラウドの一般的なepsilon-nearest-neighborグラフ表現を使用する。
論文 参考訳(メタデータ) (2023-02-02T08:33:36Z) - PointShuffleNet: Learning Non-Euclidean Features with Homotopy
Equivalence and Mutual Information [9.920649045126188]
我々は、ポイントクラウド分類とセグメンテーションにおいて非常に有望な、ポイントShuffleNet(PSN)と呼ばれる新しいポイントクラウド分析ニューラルネットワークを提案する。
我々のPSNは、ModelNet40、ShapeNet、S3DISの最先端の成果を高い効率で達成する。
論文 参考訳(メタデータ) (2021-03-31T03:01:16Z) - MG-SAGC: A multiscale graph and its self-adaptive graph convolution
network for 3D point clouds [6.504546503077047]
点群の多スケールグラフ生成法を提案する。
このアプローチは、ポイントクラウドを、スケール空間におけるポイントクラウドのマルチスケール分析をサポートする構造化マルチスケールグラフ形式に変換する。
従来の畳み込みニューラルネットワークは不規則な近傍を持つグラフデータには適用できないため,チェビシェフグラフを用いて不規則な畳み込みフィルタに適合するセフ適応畳み込みカーネルを提案する。
論文 参考訳(メタデータ) (2020-12-23T01:58:41Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
点雲完了は、部分的な観測から3次元形状の点集合表現を用いて完全な幾何学を予測するタスクである。
従来のアプローチでは、不完全点集合によって供給されるエンコーダ・デコーダモデルにより、点雲全体を直接推定するニューラルネットワークが提案されていた。
本稿では、欠落した幾何を計算し、既知の入力と予測点クラウドを融合することに焦点を当てたエンドツーエンドニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-08T22:01:23Z) - Point Set Voting for Partial Point Cloud Analysis [26.31029112502835]
近年、ポイントクラウドの分類とセグメンテーションのための技術は、大きな合成データセットを活用することで、驚くべきパフォーマンスを実現している。
本稿では, 局所点集合投票戦略を適用して, 完全点群を符号化した潜在特徴を推定する部分点群解析の一般モデルを提案する。
論文 参考訳(メタデータ) (2020-07-09T03:37:31Z) - Airborne LiDAR Point Cloud Classification with Graph Attention
Convolution Neural Network [5.69168146446103]
本稿では,空飛ぶLiDARにより得られる非構造化3次元点雲の分類に直接適用可能なグラフ注意畳み込みニューラルネットワーク(GACNN)を提案する。
提案するグラフアテンション・コンボリューション・モジュールに基づいて,GACNNと呼ばれるエンド・ツー・エンドのエンコーダ・デコーダネットワークを設計し,ポイント・クラウドのマルチスケールな特徴を捉える。
ISPRS 3Dラベリングデータセットの実験では、提案モデルが平均F1スコア(71.5%)と全精度(83.2%)で新しい最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2020-04-20T05:12:31Z) - PointHop++: A Lightweight Learning Model on Point Sets for 3D
Classification [55.887502438160304]
ポイントホップ法は、Zhangらによって、教師なし特徴抽出を伴う3Dポイントクラウド分類のために提案された。
1)モデルパラメータ数の観点からモデルの複雑さを減らし,2)クロスエントロピー基準に基づいて自動的に識別特徴を順序付けする。
ModelNet40ベンチマークデータセットで実施した実験により、PointHop++法がディープニューラルネットワーク(DNN)ソリューションと同等に動作し、他の教師なし特徴抽出法を上回る性能を示す。
論文 参考訳(メタデータ) (2020-02-09T04:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。