論文の概要: WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets
- arxiv url: http://arxiv.org/abs/2010.08232v1
- Date: Fri, 16 Oct 2020 08:28:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 20:56:10.261771
- Title: WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets
- Title(参考訳): wnut-2020タスク2: インフォメーション・covid-19英語ツイートの識別
- Authors: Dat Quoc Nguyen, Thanh Vu, Afshin Rahimi, Mai Hoang Dao, Linh The
Nguyen and Long Doan
- Abstract要約: 10Kツイートのコーパスを構築し、このタスクの開発と評価フェーズを整理する方法について述べる。
55チームの最終システム評価結果から得られた結果の概要を概説する。
- 参考スコア(独自算出の注目度): 21.41654078561586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we provide an overview of the WNUT-2020 shared task on the
identification of informative COVID-19 English Tweets. We describe how we
construct a corpus of 10K Tweets and organize the development and evaluation
phases for this task. In addition, we also present a brief summary of results
obtained from the final system evaluation submissions of 55 teams, finding that
(i) many systems obtain very high performance, up to 0.91 F1 score, (ii) the
majority of the submissions achieve substantially higher results than the
baseline fastText (Joulin et al., 2017), and (iii) fine-tuning pre-trained
language models on relevant language data followed by supervised training
performs well in this task.
- Abstract(参考訳): 本稿では,wnut-2020の共有タスクの概要について述べる。
10Kツイートのコーパスを構築し、このタスクの開発と評価フェーズを整理する方法について述べる。
また,55チームの最終システム評価結果から得られた結果の簡単な要約も提示し,その有効性を確認した。
(i)多くのシステムは0.91F1スコアまで非常に高い性能を得る。
(二 提出書の大多数は、fastText(Joulin et al., 2017)のベースラインよりも大幅に高い結果が得られる。
3) 関連言語データに対する訓練済み言語モデルの微調整を行い, 教師付き訓練を施した。
関連論文リスト
- HYBRINFOX at CheckThat! 2024 -- Task 1: Enhancing Language Models with Structured Information for Check-Worthiness Estimation [0.8083061106940517]
本稿では,2024年 - タスク1コンペティションのためのHYBRINFOXチームの実験と結果について要約する。
本稿では,RoBERTaのような言語モデルに三重項による埋め込みを組み込む手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T11:33:54Z) - KIT's Multilingual Speech Translation System for IWSLT 2023 [58.5152569458259]
IWSLT 2023の多言語トラックに対する音声翻訳システムについて述べる。
このタスクは、様々な量のリソースを持つ10の言語に翻訳する必要がある。
我々のケースド音声システムは、科学的な話の翻訳において、エンドツーエンドの音声よりも大幅に優れています。
論文 参考訳(メタデータ) (2023-06-08T16:13:20Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
公的な事前訓練された音声のみのモデルと言語のみのモデルからなる複合アーキテクチャ上に構築された音声言語モデルであるComSLを提案する。
提案手法は,エンドツーエンドの音声-テキスト翻訳タスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:42:15Z) - Bag of Tricks for Effective Language Model Pretraining and Downstream
Adaptation: A Case Study on GLUE [93.98660272309974]
このレポートでは、ジェネラル言語理解評価のリーダーボードに関するVega v1を簡潔に紹介します。
GLUEは、質問応答、言語受容性、感情分析、テキスト類似性、パラフレーズ検出、自然言語推論を含む9つの自然言語理解タスクのコレクションである。
最適化された事前学習と微調整の戦略により、13億のモデルは4/9タスクに新しい最先端のタスクを設定し、91.3の平均スコアを達成しました。
論文 参考訳(メタデータ) (2023-02-18T09:26:35Z) - Enhancing Model Performance in Multilingual Information Retrieval with
Comprehensive Data Engineering Techniques [10.57012904999091]
我々は、MIRACLデータセットを用いて、事前訓練された多言語トランスフォーマーベースモデルを微調整する。
モデルの改善は主に、多様なデータエンジニアリング技術によって達成されます。
我々はSurprise-Languagesトラックで2位、Known-Languagesトラックで0.835位、3位、NDCG@10スコアで16の既知の言語で平均0.716位を確保した。
論文 参考訳(メタデータ) (2023-02-14T12:37:32Z) - BJTU-WeChat's Systems for the WMT22 Chat Translation Task [66.81525961469494]
本稿では,WMT'22チャット翻訳タスクに対して,北京地東大学とWeChat AIを共同で提案する。
Transformerに基づいて、いくつかの有効な変種を適用します。
本システムでは,0.810と0.946のCOMETスコアを達成している。
論文 参考訳(メタデータ) (2022-11-28T02:35:04Z) - CAiRE in DialDoc21: Data Augmentation for Information-Seeking Dialogue
System [55.43871578056878]
DialDoc21コンペティションでは,サブタスク1で74.95 F1スコア,60.74 Exact Matchスコア,サブタスク2で37.72 SacreBLEUスコアを達成した。
論文 参考訳(メタデータ) (2021-06-07T11:40:55Z) - Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID
Twitter BERT and Bagging Ensemble Technique based on Plurality Voting [0.0]
新型コロナウイルス(COVID-19)に関連する英語のつぶやきを自動的に識別するシステムを開発した。
最終アプローチでは0.9037のF1スコアを達成し,F1スコアを評価基準として総合6位にランク付けした。
論文 参考訳(メタデータ) (2020-10-01T10:54:54Z) - LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for
Identification of Informative COVID-19 English Tweets [4.361526134899725]
本稿では,WNUT-2020における情報発信型英語ツイートの識別に関する共有タスクについて述べる。
本システムは,従来の特徴量に基づく分類と,事前学習型言語モデルの最近の進歩を活かした,さまざまな機械学習手法のアンサンブルである。
我々の最高の性能モデルは、提供された検証セットのF1スコア0.9179、ブラインドテストセットの0.8805を達成する。
論文 参考訳(メタデータ) (2020-09-08T16:29:25Z) - UPB at SemEval-2020 Task 9: Identifying Sentiment in Code-Mixed Social
Media Texts using Transformers and Multi-Task Learning [1.7196613099537055]
本研究チームは,SemEval-2020 Task 9のために開発したシステムについて述べる。
私たちは、ヒンディー語とスペイン語の2つのよく知られた混成言語をカバーすることを目指しています。
提案手法は, 平均F1スコアが0.6850であるヒンディー語タスクにおいて, 有望な性能を達成する。
スペイン語と英語のタスクでは、29人中17人として、平均で0.7064のF1スコアを獲得しました。
論文 参考訳(メタデータ) (2020-09-06T17:19:18Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
我々は,マルチタスク学習とBERTモデルを組み合わせた攻撃的言語検出システムを構築した。
我々のモデルは、英語のサブタスクAで91.51%のF1スコアを獲得し、これは第1位に匹敵する。
論文 参考訳(メタデータ) (2020-04-28T11:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。