論文の概要: GFL: A Decentralized Federated Learning Framework Based On Blockchain
- arxiv url: http://arxiv.org/abs/2010.10996v3
- Date: Tue, 13 Apr 2021 14:05:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 01:10:28.727730
- Title: GFL: A Decentralized Federated Learning Framework Based On Blockchain
- Title(参考訳): GFL: ブロックチェーンに基づく分散型フェデレーション学習フレームワーク
- Authors: Yifan Hu, Yuhang Zhou, Jun Xiao, Chao Wu
- Abstract要約: ブロックチェーンに基づく分散FLフレームワークであるGalaxy Federated Learning Framework(GFL)を提案する。
GFLは、通信性能を向上させるために一貫したハッシュアルゴリズムを導入し、分散FL性能と帯域幅利用を改善するために、新しいリング分散FLアルゴリズム(RDFL)を提案する。
実験により、GFLは、悪意のあるノードと非独立で同一に分散した(Non-IID)データセットのデータ汚染下で、通信性能と分散FL性能を改善した。
- 参考スコア(独自算出の注目度): 15.929643607462353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning(FL) is a rapidly growing field and many centralized and
decentralized FL frameworks have been proposed. However, it is of great
challenge for current FL frameworks to improve communication performance and
maintain the security and robustness under malicious node attacks. In this
paper, we propose Galaxy Federated Learning Framework(GFL), a decentralized FL
framework based on blockchain. GFL introduces the consistent hashing algorithm
to improve communication performance and proposes a novel ring decentralized FL
algorithm(RDFL) to improve decentralized FL performance and bandwidth
utilization. In addition, GFL introduces InterPlanetary File System(IPFS) and
blockchain to further improve communication efficiency and FL security. Our
experiments show that GFL improves communication performance and decentralized
FL performance under the data poisoning of malicious nodes and non-independent
and identically distributed(Non-IID) datasets.
- Abstract(参考訳): フェデレートラーニング(FL)は急速に成長する分野であり、多くの中央集権的かつ分散的なFLフレームワークが提案されている。
しかし、現在のflフレームワークが通信性能を改善し、悪意のあるノード攻撃下でのセキュリティと堅牢性を維持することは大きな課題である。
本稿では,ブロックチェーンに基づく分散FLフレームワークであるGalaxy Federated Learning Framework(GFL)を提案する。
gflは、通信性能を向上させるために一貫性のあるハッシュアルゴリズムを導入し、分散fl性能と帯域利用を改善するための新しいリング分散flアルゴリズム(rdfl)を提案する。
さらに、GFLはIPFS(InterPlanetary File System)とブロックチェーンを導入し、通信効率とFLセキュリティをさらに改善した。
実験の結果,gflは悪意のあるノードと非独立かつ同一分散(非iid)データセットのデータ中毒下での通信性能と分散fl性能を改善した。
関連論文リスト
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation [12.446757264387564]
我々は、フェデレートラーニング(FL)のための信頼、機密性、堅牢性を達成するために設計された革新的なハイブリッドプラットフォームであるVoltranを紹介する。
FLアグリゲーションをTEEにオフロードして、分離され、信頼され、カスタマイズ可能なオフチェーン実行を提供します。
マルチSGX並列実行戦略を導入することで、複数のFLシナリオに強力なスケーラビリティを提供する。
論文 参考訳(メタデータ) (2024-08-13T13:33:35Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Decentralized Federated Learning: A Survey and Perspective [45.81975053649379]
分散FL(DFL)は、中央サーバーを必要としない分散ネットワークアーキテクチャである。
DFLはクライアント間の直接通信を可能にし、通信リソースの大幅な節約をもたらす。
論文 参考訳(メタデータ) (2023-06-02T15:12:58Z) - Blockchain-based Monitoring for Poison Attack Detection in Decentralized
Federated Learning [2.322461721824713]
Federated Learning(FL)は、ローカルデータセットへのアクセス権の観点から、プライバシの問題に対処する機械学習技術である。
分散FLでは、労働者が相互に協力してグローバルモデルを訓練することにより、チーフは学習プロセスから排除される。
本研究では, 汚染攻撃に対する防御において, 監視フェーズを検出フェーズから切り離す手法を提案する。
論文 参考訳(メタデータ) (2022-09-30T19:07:29Z) - On the Decentralization of Blockchain-enabled Asynchronous Federated
Learning [3.3701306798873305]
フェデレートラーニング(FL)は実運用環境における真のリアルタイムアプリケーションを可能にすることが期待されている。
ブロックチェーン(FLchainとも呼ばれる)によるFLの権限付与は、台帳の不整合と情報の年齢(AoI)に関していくつかの意味を持つ。
本稿では,FLチェーン設定の影響について光を当て,AoIと台帳の不整合がFL性能に与える影響について検討する。
論文 参考訳(メタデータ) (2022-05-20T14:20:47Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
フェデレートラーニング(FL)は、デバイスの分散コンピューティング機能を活用した効率的なコミュニケーションとコンピューティングのための重要な実現手段である。
本稿では、FLと幅調整可能なスリムブルニューラルネットワーク(SNN)を統合した新しい学習フレームワークを提案する。
局所モデル更新のためのグローバルモデル集約と重ね合わせ訓練(ST)に重ね合わせ符号化(SC)を併用した通信およびエネルギー効率の高いSNNベースFL(SlimFL)を提案する。
論文 参考訳(メタデータ) (2022-03-26T15:06:13Z) - Towards On-Device Federated Learning: A Direct Acyclic Graph-based
Blockchain Approach [2.9202274421296943]
本稿では,DAG(Direct Acyclic Graph)ベースのブロックチェーンシステム(DAG-FL)を用いたフェデレートラーニングを支援するフレームワークを提案する。
2つのアルゴリズムDAG-FL ControllingとDAG-FL Updatingは、DAG-FLコンセンサスメカニズムの操作を精巧にするために異なるノードで動作するように設計されています。
論文 参考訳(メタデータ) (2021-04-27T10:29:38Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
フェデレートラーニング(FL)にブロックチェーンを統合する新しいフレームワークを提案する。
BLADE-FLは、プライバシー保護、改ざん抵抗、学習の効果的な協力の点で優れたパフォーマンスを持っている。
遅延クライアントは、他人のトレーニングされたモデルを盗聴し、不正行為を隠すために人工的なノイズを加える。
論文 参考訳(メタデータ) (2020-12-02T12:18:27Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。