論文の概要: Task-Aware Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2010.13962v3
- Date: Mon, 15 Mar 2021 22:02:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 11:11:58.274397
- Title: Task-Aware Neural Architecture Search
- Title(参考訳): タスクアウェアニューラルアーキテクチャ探索
- Authors: Cat P. Le, Mohammadreza Soltani, Robert Ravier, Vahid Tarokh
- Abstract要約: 本稿では,ベースタスクのモデル辞書と対象タスクと辞書の原子との類似性を利用して,ニューラルアーキテクチャ探索のための新しいフレームワークを提案する。
勾配に基づく探索アルゴリズムを導入することにより、ネットワークを完全に訓練することなく、検索空間の最良のアーキテクチャを評価し、発見することができる。
- 参考スコア(独自算出の注目度): 33.11791812491669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The design of handcrafted neural networks requires a lot of time and
resources. Recent techniques in Neural Architecture Search (NAS) have proven to
be competitive or better than traditional handcrafted design, although they
require domain knowledge and have generally used limited search spaces. In this
paper, we propose a novel framework for neural architecture search, utilizing a
dictionary of models of base tasks and the similarity between the target task
and the atoms of the dictionary; hence, generating an adaptive search space
based on the base models of the dictionary. By introducing a gradient-based
search algorithm, we can evaluate and discover the best architecture in the
search space without fully training the networks. The experimental results show
the efficacy of our proposed task-aware approach.
- Abstract(参考訳): 手作りニューラルネットワークの設計には多くの時間とリソースが必要です。
最近のニューラル・アーキテクチャ・サーチ(nas)の技術は、従来の手作りデザインよりも競争力があるか優れていることが証明されている。
本稿では, ベースタスクのモデル辞書と, 対象タスクと辞書の原子との類似性を利用して, ベースモデルに基づく適応探索空間を生成する, ニューラルアーキテクチャ探索のための新しいフレームワークを提案する。
勾配に基づく探索アルゴリズムを導入することにより、ネットワークを完全に訓練することなく、検索空間の最良のアーキテクチャを評価し、発見することができる。
実験の結果,提案手法の有効性が示された。
関連論文リスト
- EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition [54.99121380536659]
眼球運動バイオメトリックスは、高い安全性の識別により注目されている。
深層学習(DL)モデルは近年,眼球運動認識に成功している。
DLアーキテクチャはまだ人間の事前知識によって決定されている。
眼球運動認識のためのDLアーキテクチャを自動設計する階層的微分可能なアーキテクチャ探索アルゴリズムEM-DARTSを提案する。
論文 参考訳(メタデータ) (2024-09-22T13:11:08Z) - An Approach for Efficient Neural Architecture Search Space Definition [0.0]
本稿では, 理解や操作が容易な新しいセルベース階層型検索空間を提案する。
提案手法の目的は,検索時間を最適化し,CNNアーキテクチャのほとんどの状態を扱うのに十分な一般性を得ることである。
論文 参考訳(メタデータ) (2023-10-25T08:07:29Z) - Neural Architecture Search: Insights from 1000 Papers [50.27255667347091]
ニューラルアーキテクチャサーチの組織的で包括的なガイドを提供する。
検索空間、アルゴリズム、スピードアップのテクニックを分類する。
ベンチマークやベストプラクティス,その他の調査,オープンソースライブラリなどのリソースについて論じる。
論文 参考訳(メタデータ) (2023-01-20T18:47:24Z) - DQNAS: Neural Architecture Search using Reinforcement Learning [6.33280703577189]
畳み込みニューラルネットワークは様々な画像関連アプリケーションで使われている。
本稿では,強化学習の原則を取り入れた,ニューラルネットワークの自動探索フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-17T04:01:47Z) - Construction of Hierarchical Neural Architecture Search Spaces based on
Context-free Grammars [66.05096551112932]
文脈自由文法に基づく統一検索空間設計フレームワークを提案する。
それらの特性の強化と利用により,完全なアーキテクチャの探索を効果的に行うことができる。
既存のニューラルアーキテクチャ検索手法よりも検索戦略が優れていることを示す。
論文 参考訳(メタデータ) (2022-11-03T14:23:00Z) - Search Space Adaptation for Differentiable Neural Architecture Search in
Image Classification [15.641353388251465]
微分可能なニューラルネットワークサーチ(NAS)は、検索コストを単一のネットワークをトレーニングするレベルに削減することで大きな影響を与える。
本稿では,探索範囲を導入することで,探索空間の適応スキームを提案する。
画像分類タスクにおいて, ProxylessNAS を用いて提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-06-05T05:27:12Z) - NeuralArTS: Structuring Neural Architecture Search with Type Theory [0.0]
本稿では,ニューラルネットワーク型システム(NeuralArTS)と呼ばれる,構造化型システムにおけるネットワーク操作の無限集合を分類する新しいフレームワークを提案する。
本稿では,NeuralArTSを畳み込み層に適用し,今後の方向性を示す。
論文 参考訳(メタデータ) (2021-10-17T03:28:27Z) - Neural Architecture Search From Fr\'echet Task Distance [50.9995960884133]
与えられたベースラインタスクのセット内の対象タスクと各タスクの間の距離を、ターゲットタスクのニューラルネットワークアーキテクチャ検索スペースを減らすためにどのように使用できるかを示す。
タスク固有のアーキテクチャに対する検索空間の複雑さの低減は、このサイド情報を用いることなく完全な検索を行う代わりに、類似したタスクのために最適化されたアーキテクチャ上に構築することで達成される。
論文 参考訳(メタデータ) (2021-03-23T20:43:31Z) - Contrastive Embeddings for Neural Architectures [1.90365714903665]
従来のブラックボックス最適化アルゴリズムは,修正することなく,ニューラルアーキテクチャサーチの最先端性能に到達可能であることを示す。
また,学習中の埋め込みの進化を示すとともに,異なる学習段階における埋め込みの活用に向けた将来の研究を動機付け,検索空間におけるネットワークの理解を深める。
論文 参考訳(メタデータ) (2021-02-08T14:06:35Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
本稿では,分析者がドメイン知識を注入することで,解のサブグラフ空間を効果的に構築し,ネットワーク探索をガイドするフレームワークを提案する。
このテクニックを反復的に適用することで、アナリストは、与えられたアプリケーションに対して最高のパフォーマンスのニューラルネットワークアーキテクチャに収束することができる。
論文 参考訳(メタデータ) (2020-09-28T01:48:45Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。