Transfer Learning improves MI BCI models classification accuracy in
Parkinson's disease patients
- URL: http://arxiv.org/abs/2010.15899v1
- Date: Thu, 29 Oct 2020 19:28:00 GMT
- Title: Transfer Learning improves MI BCI models classification accuracy in
Parkinson's disease patients
- Authors: Aleksandar Miladinovi\'c, Milo\v{s} Aj\v{c}evi\'c, Pierpaolo Busan,
Joanna Jarmolowska, Giulia Silveri, Susanna Mezzarobba, Piero Paolo
Battaglini, Agostino Accardo
- Abstract summary: Motor-motorry based BCI (MIBCI) can improve ability and reduce deficit symptoms in Parkinson's Disease patients.
Advanced MotorImagery BCI methods are needed to overcome accuracy and time-related calibration challenges.
This study proposes a transfer learning-based FBCSP approach which allowed to significantly improve accuracy accuracy in MI BCI performed on PD patients.
- Score: 50.591267188664666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motor-Imagery based BCI (MI-BCI) neurorehabilitation can improve locomotor
ability and reduce the deficit symptoms in Parkinson's Disease patients.
Advanced Motor-Imagery BCI methods are needed to overcome the accuracy and
time-related MI BCI calibration challenges in such patients. In this study, we
proposed a Multi-session FBCSP (msFBCSP) based on inter-session transfer
learning and we investigated its performance compared to the single-session
based FBSCP. The main result of this study is the significantly improved
accuracy obtained by proposed msFBCSP compared to single-session FBCSP in PD
patients (median 81.3%, range 41.2-100.0% vs median 61.1%, range 25.0-100.0%,
respectively; p<0.001). In conclusion, this study proposes a transfer
learning-based multi-session based FBCSP approach which allowed to
significantly improve calibration accuracy in MI BCI performed on PD patients.
Related papers
- Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
This study aims to use heart rate variability (HRV) features to develop an effective predictive model for sepsis detection.
A neural network model is trained on the HRV features, achieving an F1 score of 0.805, a precision of 0.851, and a recall of 0.763.
arXiv Detail & Related papers (2024-08-01T01:47:29Z) - Advanced Predictive Modeling for Enhanced Mortality Prediction in ICU Stroke Patients Using Clinical Data [0.0]
Stroke is second-leading cause of disability and death among adults.
Approximately 17 million people suffer from a stroke annually, with about 85% being ischemic strokes.
We developed a deep learning model to assess mortality risk and implemented several baseline machine learning models for comparison.
arXiv Detail & Related papers (2024-07-19T11:17:42Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Parkinson's Disease Detection through Vocal Biomarkers and Advanced
Machine Learning Algorithms [0.0]
This study explores the potential of vocal feature alterations in PD patients as a means of early disease prediction.
utilizing a variety of advanced machine-learning algorithms, including XGBoost, LightGBM, Bagging, AdaBoost, and Support Vector Machine.
LightGBM exhibited a remarkable sensitivity of 100% and specificity of 94.43%, surpassing other machine learning algorithms in accuracy and AUC scores.
arXiv Detail & Related papers (2023-11-09T15:21:10Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
Motor-imagery based brain-computer interfaces (MI-BCI) have the potential to become ground-breaking technologies for neurorehabilitation.
Due to the noisy nature of the used EEG signal, reliable BCI systems require specialized procedures for features optimization and extraction.
arXiv Detail & Related papers (2020-10-13T20:50:13Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.