Dynamic Data Selection for Curriculum Learning via Ability Estimation
- URL: http://arxiv.org/abs/2011.00080v1
- Date: Fri, 30 Oct 2020 20:01:56 GMT
- Title: Dynamic Data Selection for Curriculum Learning via Ability Estimation
- Authors: John P. Lalor and Hong Yu
- Abstract summary: We propose replacing difficultys with learned difficulty parameters.
We also propose Dynamic selection for Curriculum Learning via Ability Estimation.
We show that models using learned difficulty and/or ability outperform data-based curriculum learning models on the GLUE classification tasks.
- Score: 6.255759848576057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Curriculum learning methods typically rely on heuristics to estimate the
difficulty of training examples or the ability of the model. In this work, we
propose replacing difficulty heuristics with learned difficulty parameters. We
also propose Dynamic Data selection for Curriculum Learning via Ability
Estimation (DDaCLAE), a strategy that probes model ability at each training
epoch to select the best training examples at that point. We show that models
using learned difficulty and/or ability outperform heuristic-based curriculum
learning models on the GLUE classification tasks.
Related papers
- Accelerating Deep Learning with Fixed Time Budget [2.190627491782159]
This paper proposes an effective technique for training arbitrary deep learning models within fixed time constraints.
The proposed method is extensively evaluated in both classification and regression tasks in computer vision.
arXiv Detail & Related papers (2024-10-03T21:18:04Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
We introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors.
We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner.
We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds.
arXiv Detail & Related papers (2024-07-19T13:36:35Z) - EfficientTrain++: Generalized Curriculum Learning for Efficient Visual Backbone Training [79.96741042766524]
We reformulate the training curriculum as a soft-selection function.
We show that exposing the contents of natural images can be readily achieved by the intensity of data augmentation.
The resulting method, EfficientTrain++, is simple, general, yet surprisingly effective.
arXiv Detail & Related papers (2024-05-14T17:00:43Z) - Unlearnable Algorithms for In-context Learning [36.895152458323764]
In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model.
We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data.
We propose a new holistic measure of unlearning cost which accounts for varying inference costs.
arXiv Detail & Related papers (2024-02-01T16:43:04Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Strategies and impact of learning curve estimation for CNN-based image
classification [0.2678472239880052]
Learning curves are a measure for how the performance of machine learning models improves given a certain volume of training data.
Over a wide variety of applications and models it was observed that learning curves follow -- to a large extent -- a power law behavior.
By estimating the learning curve of a model from training on small subsets of data only the best models need to be considered for training on the full dataset.
arXiv Detail & Related papers (2023-10-12T16:28:25Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Curriculum Learning: A Survey [65.31516318260759]
Curriculum learning strategies have been successfully employed in all areas of machine learning.
We construct a taxonomy of curriculum learning approaches by hand, considering various classification criteria.
We build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm.
arXiv Detail & Related papers (2021-01-25T20:08:32Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
We propose a competence-aware curriculum for visual concept learning in a question-answering manner.
We design a neural-symbolic concept learner for learning the visual concepts and a multi-dimensional Item Response Theory (mIRT) model for guiding the learning process.
Experimental results on CLEVR show that with a competence-aware curriculum, the proposed method achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-07-03T05:08:09Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
We present a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time.
Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data.
arXiv Detail & Related papers (2020-06-12T13:34:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.