論文の概要: Strongly universally consistent nonparametric regression and
classification with privatised data
- arxiv url: http://arxiv.org/abs/2011.00216v1
- Date: Sat, 31 Oct 2020 09:00:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 05:13:26.221124
- Title: Strongly universally consistent nonparametric regression and
classification with privatised data
- Title(参考訳): 民営化データを用いた強い一貫した非パラメトリック回帰と分類
- Authors: Thomas Berrett, L\'aszl\'o Gy\"orfi, Harro Walk
- Abstract要約: 非パラメトリック回帰の古典的問題を再考するが、局所的な差分プライバシー制約を課す。
我々は回帰関数の新しい推定器を設計し、よく研究された分割回帰推定器の民営版とみなすことができる。
- 参考スコア(独自算出の注目度): 2.879036956042183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we revisit the classical problem of nonparametric regression,
but impose local differential privacy constraints. Under such constraints, the
raw data $(X_1,Y_1),\ldots,(X_n,Y_n)$, taking values in $\mathbb{R}^d \times
\mathbb{R}$, cannot be directly observed, and all estimators are functions of
the randomised output from a suitable privacy mechanism. The statistician is
free to choose the form of the privacy mechanism, and here we add Laplace
distributed noise to a discretisation of the location of a feature vector $X_i$
and to the value of its response variable $Y_i$. Based on this randomised data,
we design a novel estimator of the regression function, which can be viewed as
a privatised version of the well-studied partitioning regression estimator. The
main result is that the estimator is strongly universally consistent. Our
methods and analysis also give rise to a strongly universally consistent binary
classification rule for locally differentially private data.
- Abstract(参考訳): 本稿では,非パラメトリック回帰の古典的な問題を再検討するが,局所微分プライバシー制約を課す。
このような制約の下では、$\mathbb{r}^d \times \mathbb{r}$ の値を取る生データ $(x_1,y_1),\ldots,(x_n,y_n)$ を直接観測することはできず、全ての推定値は適切なプライバシーメカニズムからランダム化された出力の関数である。
統計学者は、プライバシーメカニズムの形式を自由に選択でき、ここでは、特徴ベクトル$X_i$の位置と応答変数$Y_i$の値の離散化にLaplace分散ノイズを追加します。
このランダム化データに基づいて回帰関数の新しい推定器を設計し、よく研究された分割回帰推定器の民営化版とみなすことができる。
主な結果は、推定元が強普遍的に一貫したことである。
我々の手法と分析は、局所的に微分プライベートなデータに対して、強く一貫した二項分類規則をもたらす。
関連論文リスト
- On Differentially Private U Statistics [25.683071759227293]
局所的なH'ajekプロジェクションを用いて、データの異なる部分集合を再重み付けする新しいしきい値に基づくアプローチを提案する。
これは、非退化U統計に対してほぼ最適なプライベート誤差をもたらし、退化U統計に対してほぼ最適であることを示す強い指標となる。
論文 参考訳(メタデータ) (2024-07-06T03:27:14Z) - Insufficient Statistics Perturbation: Stable Estimators for Private Least Squares [38.478776450327125]
通常の最小二乗に対するサンプルと時間効率の微分プライベートアルゴリズムを提案する。
私たちのほぼ最適精度は、条件番号または指数時間を持つデータセットに対して保持します。
論文 参考訳(メタデータ) (2024-04-23T18:00:38Z) - On Rate-Optimal Partitioning Classification from Observable and from
Privatised Data [0.0]
分割分類の古典的手法を再検討し, 緩和条件下での収束率について検討する。
プライバシー制約は、データ$(X_i$), dots,(X_n,Y_n)$を直接観察できないことを意味する。
特徴ベクトル$X_i$とラベル$Y_i$のすべての可能な位置の停止にLaplace分散ノイズを付加する。
論文 参考訳(メタデータ) (2023-12-22T18:07:18Z) - Differentially Private Statistical Inference through $\beta$-Divergence
One Posterior Sampling [2.8544822698499255]
本稿では,モデルとデータ生成プロセス間の$beta$-divergenceの最小化を目標とした,一般化後部からの後部サンプリング手法を提案する。
これにより、基礎となるモデルの変更を必要とせずに、一般的に適用可能なプライベートな推定が可能になる。
我々は、$beta$D-Bayesが同一のプライバシー保証に対してより正確な推測を行うことを示す。
論文 参考訳(メタデータ) (2023-07-11T12:00:15Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
プライベート平均推定に対する古典的なアプローチは、真の平均を計算し、バイアスのないがおそらく相関のあるガウスノイズを加えることである。
すべての入力データセットに対して、集中的な差分プライバシーを満たす非バイアス平均推定器が、少なくとも多くのエラーをもたらすことを示す。
論文 参考訳(メタデータ) (2023-01-31T18:47:42Z) - Regression with Label Differential Privacy [64.21020761920322]
与えられた回帰損失関数の下で最適なラベルDPランダム化機構を導出する。
我々は、最適メカニズムが「ビンのランダム化応答」の形をとることを証明した。
論文 参考訳(メタデータ) (2022-12-12T17:41:32Z) - $p$-Generalized Probit Regression and Scalable Maximum Likelihood
Estimation via Sketching and Coresets [74.37849422071206]
本稿では, 2次応答に対する一般化線形モデルである,$p$一般化プロビット回帰モデルについて検討する。
p$の一般化されたプロビット回帰に対する最大可能性推定器は、大容量データ上で$(1+varepsilon)$の係数まで効率的に近似できることを示す。
論文 参考訳(メタデータ) (2022-03-25T10:54:41Z) - Nonparametric extensions of randomized response for private confidence sets [51.75485869914048]
本研究は,局所的差分プライバシー(LDP)の制約の下で,集団平均の非パラメトリック,非漸近的統計的推測を行う手法を導出する。
民営化データへのアクセスのみを与えられた場合、$mustar$に対して信頼区間(CI)と時間一様信頼シーケンス(CS)を提示する。
論文 参考訳(メタデータ) (2022-02-17T16:04:49Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
実用データセットに対する予測の偏見を回避し、頻繁な不確実性を推定する改善された手法を開発している。
私たちの主な貢献は、推定と推論の計算時間をマグニチュードの順序で短縮する収束保証付き信号強度の推定器SLOEです。
論文 参考訳(メタデータ) (2021-03-23T17:48:56Z) - Distributionally-Robust Machine Learning Using Locally
Differentially-Private Data [14.095523601311374]
機械学習、特に回帰は、局所的に異なるプライベートデータセットを用いて検討する。
ローカルに微分プライベートなデータセットを用いた機械学習は、分散ロバスト最適化として書き直せることを示す。
論文 参考訳(メタデータ) (2020-06-24T05:12:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。