論文の概要: Optimal 2-uniform convexity of Schatten classes revisited
- arxiv url: http://arxiv.org/abs/2011.00354v1
- Date: Sat, 31 Oct 2020 20:30:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-26 05:40:25.530439
- Title: Optimal 2-uniform convexity of Schatten classes revisited
- Title(参考訳): シャッテン類再訪の最適2-一様凸性
- Authors: Haonan Zhang
- Abstract要約: S_p, 1ple 2$ の最適 2-一様凸性は、Ball, Carlen and Lieb citeBCL94 によって初めて証明された。
量子情報理論において、複数の演算子積分と一般化単調測度を用いてこの結果を再検討する。
- 参考スコア(独自算出の注目度): 1.90365714903665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The optimal 2-uniform convexity of Schatten classes $S_p, 1<p\le 2$ was first
proved by Ball, Carlen and Lieb \cite{BCL94}. In this note we revisit this
result using multiple operator integrals and generalized monotone metrics in
quantum information theory.
- Abstract(参考訳): シャッテン類 $S_p, 1<p\le 2$ の最適 2-一様凸性は、Ball, Carlen and Lieb \cite{BCL94} によって初めて証明された。
本稿では、この結果を複数の演算子積分と量子情報理論における一般化単調計量を用いて再検討する。
関連論文リスト
- The operadic theory of convexity [0.0]
我々は、PROP上の代数の観点から凸性を特徴づけ、凸集合の圏上でテンソル積のような対称モノイド構造を確立する。
この構成を、Baez, Fritz, Leinsterのエントロピーのカテゴリー的特徴付けと、単純分布の枠組みにおける量子的文脈性の研究に適用する。
論文 参考訳(メタデータ) (2024-03-26T21:01:39Z) - Faster Convergence with Multiway Preferences [99.68922143784306]
本稿では,符号関数に基づく比較フィードバックモデルについて考察し,バッチとマルチウェイの比較による収束率の解析を行う。
本研究は,マルチウェイ選好による凸最適化の問題を初めて研究し,最適収束率を解析するものである。
論文 参考訳(メタデータ) (2023-12-19T01:52:13Z) - Gradient-free optimization of highly smooth functions: improved analysis
and a new algorithm [87.22224691317766]
この研究は、目的関数が極めて滑らかであるという仮定の下で、ゼロ次ノイズオラクル情報による問題を研究する。
ゼロオーダー射影勾配勾配アルゴリズムを2種類検討する。
論文 参考訳(メタデータ) (2023-06-03T17:05:13Z) - Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity --
the Strongly Convex Case [0.0]
目的がグローバルリプシッツであると仮定することなく,ハミルトン条件下での対数凹面分布からのサンプリングを検討する。
本稿では,多角勾配(テード)オイラースキームに基づく2つのアルゴリズムを提案し,各アルゴリズムのプロセスの法則と対象測度との間の非漸近的な2-ワッサーシュタイン距離を求める。
論文 参考訳(メタデータ) (2023-01-19T12:32:41Z) - Dueling Convex Optimization with General Preferences [85.14061196945599]
本研究の目的は, エンフィロンリングフィードバックの弱い形を条件として, 凸関数を最小化することである。
我々の主な貢献は、滑らかな凸対象関数に対する収束$smashwidetilde O(epsilon-4p)$と、その目的が滑らかで凸であるときに効率$smashwidetilde O(epsilon-2p)を持つ効率的なアルゴリズムである。
論文 参考訳(メタデータ) (2022-09-27T11:10:41Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Thinking Outside the Ball: Optimal Learning with Gradient Descent for
Generalized Linear Stochastic Convex Optimization [37.177329562964765]
我々は凸リプシッツ損失を伴う線形予測、あるいはより一般に一般化線型形式の凸最適化問題を考える。
この設定では、初期反復が明示的な正規化や投影を伴わずにグラディエント Descent (GD) を停止し、過大なエラーを最大$epsilon$で保証することを示した。
しかし、標準球における一様収束は、$Theta (1/epsilon4)$サンプルを用いた最適下界学習を保証できることを示しているが、分布依存球における一様収束に依存している。
論文 参考訳(メタデータ) (2022-02-27T09:41:43Z) - Generalization in Supervised Learning Through Riemannian Contraction [4.3604518673788135]
教師付き学習環境では、計量 0 がアセシアンレート $lambda で収縮している場合、それは一様に$math であることを示す。
結果は、連続および安定な $-time において、勾配と決定論的損失曲面を保っている。
それらは、Descent$凸面や強い凸損失面など、ある種の線形な設定で最適であることを示すことができる。
論文 参考訳(メタデータ) (2022-01-17T23:08:47Z) - Optimal transport with $f$-divergence regularization and generalized
Sinkhorn algorithm [0.0]
エントロピー正則化は、元の最適輸送問題を一般化する。
Kullback-Leibler の発散を一般の$f$-divergence に置き換えると、自然な一般化につながる。
本稿では,正規化された最適輸送コストとその勾配を計算するための実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-29T16:37:31Z) - Leveraging Non-uniformity in First-order Non-convex Optimization [93.6817946818977]
目的関数の非一様洗練は、emphNon-uniform Smoothness(NS)とemphNon-uniform Lojasiewicz inequality(NL)につながる
新しい定義は、古典的な$Omega (1/t2)$下界よりも早く大域的最適性に収束する新しい幾何学的一階法を刺激する。
論文 参考訳(メタデータ) (2021-05-13T04:23:07Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
ヒルベルトの17番目の問題において、アルティンはいくつかの変数の任意の正定値が2つの平方和の商として書けることを示した。
レズニックはアルティンの結果の分母は常に変数の平方ノルムの$N$-次パワーとして選択できることを示した。
論文 参考訳(メタデータ) (2019-09-04T11:46:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。