Frequency-compensated PINNs for Fluid-dynamic Design Problems
- URL: http://arxiv.org/abs/2011.01456v1
- Date: Tue, 3 Nov 2020 03:56:41 GMT
- Title: Frequency-compensated PINNs for Fluid-dynamic Design Problems
- Authors: Tongtao Zhang, Biswadip Dey, Pratik Kakkar, Arindam Dasgupta, Amit
Chakraborty
- Abstract summary: We propose a physics-informed neural network (PINN) architecture for learning the relationship between simulation output and underlying geometry and boundary conditions.
In addition to using a physics-based regularization term, the proposed approach also exploits the underlying physics to learn a set of Fourier features, i.e. frequency and phase parameters.
We demonstrate this approach by predicting simulation results over out of range time interval and for design conditions.
- Score: 3.0168882791480978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incompressible fluid flow around a cylinder is one of the classical problems
in fluid-dynamics with strong relevance with many real-world engineering
problems, for example, design of offshore structures or design of a pin-fin
heat exchanger. Thus learning a high-accuracy surrogate for this problem can
demonstrate the efficacy of a novel machine learning approach. In this work, we
propose a physics-informed neural network (PINN) architecture for learning the
relationship between simulation output and the underlying geometry and boundary
conditions. In addition to using a physics-based regularization term, the
proposed approach also exploits the underlying physics to learn a set of
Fourier features, i.e. frequency and phase offset parameters, and then use them
for predicting flow velocity and pressure over the spatio-temporal domain. We
demonstrate this approach by predicting simulation results over out of range
time interval and for novel design conditions. Our results show that
incorporation of Fourier features improves the generalization performance over
both temporal domain and design space.
Related papers
- Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
Physics-Informed Neural Networks (PINNs) have emerged as an influential technology, merging the swift and automated capabilities of machine learning with the precision and dependability of simulations grounded in theoretical physics.
However, wide adoption of PINNs is still hindered by reliability issues, particularly at extreme ends of the input parameter ranges.
We propose a domain knowledge-based modifications to the PINN architecture ensuring its correct behavior.
arXiv Detail & Related papers (2024-11-15T08:55:31Z) - Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics [0.0]
A physical problem, the Taylor-Green vortex, defined on a bi-periodic domain, is used as a benchmark to evaluate the performance of both the standard physics-informed neural network and our model.
Results exhibit that while the standard physics-informed neural network fails to predict the solution accurately and merely returns the initial condition for the entire time span, our model successfully captures the temporal changes in the physics.
arXiv Detail & Related papers (2024-10-05T10:32:51Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
We introduce Spherical FNOs (SFNOs) for learning operators on spherical geometries.
SFNOs have important implications for machine learning-based simulation of climate dynamics.
arXiv Detail & Related papers (2023-06-06T16:27:17Z) - Reconstructing Turbulent Flows Using Physics-Aware Spatio-Temporal
Dynamics and Test-Time Refinement [10.711201734103073]
We propose a new physics-guided neural network for reconstructing the sequential DNS from low-resolution LES data.
A Sim-based refinement method is also developed to enforce physical constraints and further reduce the accumulated reconstruction errors over long periods.
arXiv Detail & Related papers (2023-04-24T14:33:34Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
We introduce MultiScaleGNN, a novel multi-scale graph neural network model for learning to infer unsteady continuum mechanics.
We demonstrate this method on advection problems and incompressible fluid dynamics, both fundamental phenomena in oceanic and atmospheric processes.
Simulations obtained with MultiScaleGNN are between two and four orders of magnitude faster than those on which it was trained.
arXiv Detail & Related papers (2022-05-05T13:33:03Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Physics-informed deep learning for incompressible laminar flows [13.084113582897965]
We propose a mixed-variable scheme of physics-informed neural network (PINN) for fluid dynamics.
A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.
arXiv Detail & Related papers (2020-02-24T21:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.