Support estimation in high-dimensional heteroscedastic mean regression
- URL: http://arxiv.org/abs/2011.01591v2
- Date: Wed, 05 Feb 2025 08:36:49 GMT
- Title: Support estimation in high-dimensional heteroscedastic mean regression
- Authors: Philipp Hermann, Hajo Holzmann,
- Abstract summary: We consider a linear mean regression model with random design and potentially heteroscedastic, heavy-tailed errors.
We use a strictly convex, smooth variant of the Huber loss function with tuning parameter depending on the parameters of the problem.
For the resulting estimator we show sign-consistency and optimal rates of convergence in the $ell_infty$ norm.
- Score: 2.07180164747172
- License:
- Abstract: A current strand of research in high-dimensional statistics deals with robustifying the available methodology with respect to deviations from the pervasive light-tail assumptions. In this paper we consider a linear mean regression model with random design and potentially heteroscedastic, heavy-tailed errors, and investigate support estimation in this framework. We use a strictly convex, smooth variant of the Huber loss function with tuning parameter depending on the parameters of the problem, as well as the adaptive LASSO penalty for computational efficiency. For the resulting estimator we show sign-consistency and optimal rates of convergence in the $\ell_\infty$ norm as in the homoscedastic, light-tailed setting. In our analysis, we have to deal with the issue that the support of the target parameter in the linear mean regression model and its robustified version may differ substantially even for small values of the tuning parameter of the Huber loss function. Simulations illustrate the favorable numerical performance of the proposed methodology.
Related papers
- Consistent support recovery for high-dimensional diffusions [0.0]
This paper analyzes a d-dimensional ergodic diffusion process under sparsity constraints, focusing on the adaptive Lasso estimator.
We derive conditions under which the adaptive Lasso achieves support recovery property and normality for the drift parameter, with a focus on linear models.
arXiv Detail & Related papers (2025-01-28T04:44:00Z) - RieszBoost: Gradient Boosting for Riesz Regression [49.737777802061984]
We propose a novel gradient boosting algorithm to directly estimate the Riesz representer without requiring its explicit analytical form.
We show that our algorithm performs on par with or better than indirect estimation techniques across a range of functionals.
arXiv Detail & Related papers (2025-01-08T23:04:32Z) - Adaptive Conformal Inference by Betting [51.272991377903274]
We consider the problem of adaptive conformal inference without any assumptions about the data generating process.
Existing approaches for adaptive conformal inference are based on optimizing the pinball loss using variants of online gradient descent.
We propose a different approach for adaptive conformal inference that leverages parameter-free online convex optimization techniques.
arXiv Detail & Related papers (2024-12-26T18:42:08Z) - Asymptotics of Linear Regression with Linearly Dependent Data [28.005935031887038]
We study the computations of linear regression in settings with non-Gaussian covariates.
We show how dependencies influence estimation error and the choice of regularization parameters.
arXiv Detail & Related papers (2024-12-04T20:31:47Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression [2.7498981662768536]
We propose a scalable variational Bayes method for statistical inference in sparse linear regression.
Our approach relies on assigning a mean-field approximation to the nuisance coordinates.
This requires only a preprocessing step and preserves the computational advantages of mean-field variational Bayes.
arXiv Detail & Related papers (2024-06-18T14:27:44Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level.
We show minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estimators.
arXiv Detail & Related papers (2020-01-15T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.