Universal scaling at a pre-thermal dark state
- URL: http://arxiv.org/abs/2112.14180v2
- Date: Thu, 9 Jun 2022 09:33:56 GMT
- Title: Universal scaling at a pre-thermal dark state
- Authors: Marvin Syed, Tilman Enss, Nicol\`o Defenu
- Abstract summary: We discuss the universal dynamical scaling after a sudden quench of the non-Hermitian $O(N)$ model Hamiltonian.
While universality is generally spoiled by non-Hermiticity, we find that for a given set of internal parameters short-time scaling behaviour is restored with an initial slip profoundly different from that of closed quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent experimental and theoretical progress as well as the prospect of
commercially viable quantum technologies have inspired great interest in the
study of open quantum systems and their dynamics. Many open quantum systems are
well described by an effective non-Hermitian Hamiltonian generating a time
evolution that allows eigenstates to decay and dissipate to the environment. In
this framework, quantum coherent scaling is traditionally tied to the
appearance of dark states, where the effect of dissipation becomes negligible.
Here, we discuss the universal dynamical scaling after a sudden quench of the
non-Hermitian $O(N)$ model Hamiltonian. While universality is generally spoiled
by non-Hermiticity, we find that for a given set of internal parameters
short-time scaling behaviour is restored with an initial slip exponent
profoundly different from that of closed quantum systems. This result is tied
to the compensation of dissipation by interaction effects at short times
leading to a prethermal dark state, where coherent many-body dynamics can be
still observed.
Related papers
- Observing Time-Dependent Energy Level Renormalisation in an Ultrastrongly Coupled Open System [37.69303106863453]
We show how strong coupling and memory effects influence the energy levels of open quantum systems.
Measurements reveal a time-dependent shift in the system's energy levels of up to 15% of the bare system frequency.
Our findings provide direct evidence of dynamic energy level renormalisation in strongly coupled open quantum systems.
arXiv Detail & Related papers (2024-08-28T16:40:55Z) - Magnetization in a non-equilibrium quantum spin system [0.0]
We show that the effective non-Hermitian Hamiltonian can accurately represent the long-term dynamics of a critical two-level open quantum system.
The NESS is identical to the coalescent state of the effective non-Hermitian Hamiltonian.
This discovery paves the way for a better understanding of the long-term dynamics of critical open quantum systems.
arXiv Detail & Related papers (2024-06-01T02:16:24Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Entanglement timescale and mixedness in non-Hermitian quantum systems [0.0]
We discuss the short-time perturbative expansion of the linear entropy for finite-dimensional quantum systems.
We find that the non-Hermitian Hamiltonian enhances the short-time dynamics of the linear entropy for the considered input states.
Our results find applications to non-Hermitian quantum sensing, quantum thermodynamics of non-Hermitian systems, and $mathcalPT$-symmetric quantum field theory.
arXiv Detail & Related papers (2022-09-23T15:53:07Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Interaction-driven breakdown of dynamical localization in a kicked
quantum gas [0.0]
Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization.
We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice.
Results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting systems.
arXiv Detail & Related papers (2021-06-17T17:52:55Z) - Exponentially accelerated approach to stationarity in Markovian open
quantum systems through the Mpemba effect [0.0]
We show that the relaxation dynamics of Markovian open quantum systems can be accelerated exponentially by devising an optimal unitary transformation.
This initial "rotation" is engineered in such a way that the state of the quantum system becomes to the slowest decaying dynamical mode.
We illustrate our idea by showing how to achieve an exponential speed-up in the convergence to stationarity in Dicke models.
arXiv Detail & Related papers (2021-03-08T19:02:31Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Universal Error Bound for Constrained Quantum Dynamics [0.0]
We establish an observable-based error bound for a constrained-dynamics approximation in generic gapped quantum systems.
Our work establishes a universal and rigorous result concerning nonequilibrium quantum dynamics.
arXiv Detail & Related papers (2020-01-03T06:25:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.