論文の概要: Alquist 2.0: Alexa Prize Socialbot Based on Sub-Dialogue Models
- arxiv url: http://arxiv.org/abs/2011.03259v1
- Date: Fri, 6 Nov 2020 10:06:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 04:49:28.676760
- Title: Alquist 2.0: Alexa Prize Socialbot Based on Sub-Dialogue Models
- Title(参考訳): Alquist 2.0: サブダイアログモデルに基づくAlexa Prize Socialbot
- Authors: Jan Pichl, Petr Marek, Jakub Konr\'ad, Martin Matul\'ik, and Jan
\v{S}ediv\'y
- Abstract要約: トピックノードと呼ばれるオンオフトピック構造を利用したシステムを提案する。
各ノードは複数のサブダイアログから構成され、各サブダイアログは独自のLSTMベースの対話管理モデルを持つ。
サブダイアログはトピック階層やユーザインテントに従ってトリガーされ、ボットはセッション毎にユニークなエクスペリエンスを生成できる。
- 参考スコア(独自算出の注目度): 0.9786690381850356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the second version of the dialogue system named Alquist
competing in Amazon Alexa Prize 2018. We introduce a system leveraging
ontology-based topic structure called topic nodes. Each of the nodes consists
of several sub-dialogues, and each sub-dialogue has its own LSTM-based model
for dialogue management. The sub-dialogues can be triggered according to the
topic hierarchy or a user intent which allows the bot to create a unique
experience during each session.
- Abstract(参考訳): 本稿では,Amazon Alexa Prize 2018に出場するAlquistという対話システムの第2版を紹介する。
トピックノードと呼ばれるオントロジーに基づくトピック構造を利用したシステムを提案する。
各ノードは複数のサブダイアログから構成され、各サブダイアログは独自のLSTMベースの対話管理モデルを持つ。
サブダイアログはトピック階層やユーザインテントに従って起動され、各セッション中にボットがユニークなエクスペリエンスを作成することができる。
関連論文リスト
- DEMO: Reframing Dialogue Interaction with Fine-grained Element Modeling [73.08187964426823]
大規模言語モデル (LLM) によって実現された対話システムは、人間と機械の相互作用において中心的なモードの1つとなっている。
本稿では,新しい研究課題--$textbfD$ialogue $textbfE$lement $textbfMO$delingを紹介する。
本稿では,包括的対話モデリングと評価のために設計された新しいベンチマークである$textbfDEMO$を提案する。
論文 参考訳(メタデータ) (2024-12-06T10:01:38Z) - Let's Go Real Talk: Spoken Dialogue Model for Face-to-Face Conversation [55.043492250775294]
本稿では,新しい対面音声対話モデルを提案する。
ユーザ入力から音声視覚音声を処理し、応答として音声視覚音声を生成する。
また,最初の大規模マルチモーダル音声対話コーパスであるMultiDialogを紹介する。
論文 参考訳(メタデータ) (2024-06-12T04:48:36Z) - Hierarchical Dialogue Understanding with Special Tokens and Turn-level
Attention [19.03781524017955]
単純だが効果的な階層的対話理解モデルHiDialogを提案する。
まず,複数の特別なトークンを対話に挿入し,階層的にターン埋め込みを学習するためのターンレベルアテンションを提案する。
我々は,対話関係抽出,対話感情認識,対話行為分類など,対話理解タスクにおけるモデルの評価を行った。
論文 参考訳(メタデータ) (2023-04-29T13:53:48Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUSは、任意の新しいドメインでの対話を要約するための訓練済みエンコーダデコーダモデルである。
実験の結果,DIONYSUSは6つのデータセット上で既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-12-20T06:21:21Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
対話データを効率的に構築し、利用する方法や、さまざまなドメインにモデルを大規模にデプロイする方法は、タスク指向の対話システムを構築する上で重要な問題である。
エージェントは対話とマニュアルの両方からタスクを学習する。
提案手法は,詳細なドメインオントロジーに対する対話モデルの依存性を低減し,様々なドメインへの適応をより柔軟にする。
論文 参考訳(メタデータ) (2022-08-16T08:21:12Z) - Adapting Document-Grounded Dialog Systems to Spoken Conversations using
Data Augmentation and a Noisy Channel Model [46.93744191416991]
第10回ダイアログ・システム・テクノロジー・チャレンジ(DSTC10)第2章の報告を要約する。
このタスクは3つのサブタスクから構成される: ターンが知識を求めるかどうかを検知し、関連する知識文書を選択し、最後に接地された応答を生成する。
ベストシステムは,課題の人的評価において,第1位,第3位を達成できた。
論文 参考訳(メタデータ) (2021-12-16T12:51:52Z) - An Approach to Inference-Driven Dialogue Management within a Social
Chatbot [10.760026478889667]
会話を一連の応答生成タスクとしてフレーミングする代わりに、会話を協調推論プロセスとしてモデル化する。
私たちのパイプラインは、このモデリングを3つの幅広い段階で達成します。
このアプローチは、ユーザ入力の潜在意味論、フレキシブルなイニシアティブの取り方、対話コンテキストに新しく一貫性のある応答を理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-31T19:01:07Z) - Alquist 3.0: Alexa Prize Bot Using Conversational Knowledge Graph [0.9236074230806579]
本稿では,Alexa Prize 2020コンペティションで開発されたオープンドメイン対話システムAlquistの第3版を紹介する。
主な貢献は、会話の知識グラフと隣接ペアに基づくシステムの導入である。
本稿では,Alquistのパイプライン,データ取得と処理,対話マネージャ,NLG,知識集約,隣接ペアの階層について論じる。
論文 参考訳(メタデータ) (2020-11-06T10:10:02Z) - UniConv: A Unified Conversational Neural Architecture for Multi-domain
Task-oriented Dialogues [101.96097419995556]
ユニコンブ」はタスク指向対話におけるエンドツーエンド対話システムのための新しい統合型ニューラルネットワークである。
我々は、MultiWOZ2.1ベンチマークにおいて、対話状態追跡、コンテキスト・ツー・テキスト、エンドツーエンド設定の包括的な実験を行う。
論文 参考訳(メタデータ) (2020-04-29T16:28:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。