論文の概要: ControlFlag: A Self-Supervised Idiosyncratic Pattern Detection System
for Software Control Structures
- arxiv url: http://arxiv.org/abs/2011.03616v5
- Date: Mon, 17 May 2021 16:22:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 05:24:54.358594
- Title: ControlFlag: A Self-Supervised Idiosyncratic Pattern Detection System
for Software Control Structures
- Title(参考訳): ControlFlag: ソフトウェア制御構造のための自己監督型慣用パターン検出システム
- Authors: Niranjan Hasabnis and Justin Gottschlich
- Abstract要約: 本稿では,自己教師型機械プログラミング(MP)システムであるControlFlagを紹介する。
ソフトウェア制御構造における慣用的パターン違反の検出を試みる。
ControlFlagはすでに、開発者によって承認され、修正されたCURLの異常を発見している。
- 参考スコア(独自算出の注目度): 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software debugging has been shown to utilize upwards of half of developers'
time. Yet, machine programming (MP), the field concerned with the automation of
software (and hardware) development, has recently made strides in both research
and production-quality automated debugging systems. In this paper we present
ControlFlag, a self-supervised MP system that aims to improve debugging by
attempting to detect idiosyncratic pattern violations in software control
structures. ControlFlag also suggests possible corrections in the event an
anomalous pattern is detected. We present ControlFlag's design and provide an
experimental evaluation and analysis of its efficacy in identifying potential
programming errors in production-quality software. As a first concrete evidence
towards improving software quality, ControlFlag has already found an anomaly in
CURL that has been acknowledged and fixed by its developers. We also discuss
future extensions of ControlFlag.
- Abstract(参考訳): ソフトウェアデバッギングは開発者の半数以上の時間を有効活用することが示されている。
しかし、ソフトウェア(とハードウェア)開発の自動化に関わる分野であるマシンプログラミング(mp)は最近、研究とプロダクション品質の自動化デバッグシステムの両方で進歩を遂げた。
本稿では,ソフトウェア制御構造における慣用的パターン違反を検知し,デバッグを改善することを目的とした自己教師型MPシステムであるControlFlagを提案する。
controlflagはまた、異常なパターンが検出された場合の修正の可能性も示唆している。
実運用品質のソフトウェアにおける潜在的なプログラミングエラーを識別する実験的な評価と解析を行う。
ソフトウェア品質を改善するための最初の具体的な証拠として、ControlFlagは、すでにCURLに異常を発見し、開発者によって承認され、修正されている。
ControlFlagの今後の拡張についても論じる。
関連論文リスト
- Patch2QL: Discover Cognate Defects in Open Source Software Supply Chain
With Auto-generated Static Analysis Rules [1.9591497166224197]
本稿では,SASTルールの自動生成によるOSSのコグネート欠陥の検出手法を提案する。
具体的には、プリパッチバージョンとポストパッチバージョンから重要な構文と意味情報を抽出する。
我々はPatch2QLというプロトタイプツールを実装し、それをC/C++の基本OSSに適用した。
論文 参考訳(メタデータ) (2024-01-23T02:23:11Z) - Finding Software Vulnerabilities in Open-Source C Projects via Bounded
Model Checking [2.9129603096077332]
我々は,汎用ソフトウェアシステムの脆弱性を効果的に検出できる境界モデル検査手法を提唱する。
我々は,最先端の有界モデルチェッカーを用いて,大規模ソフトウェアシステムを検証する手法を開発し,評価した。
論文 参考訳(メタデータ) (2023-11-09T11:25:24Z) - A General Framework for Verification and Control of Dynamical Models via Certificate Synthesis [54.959571890098786]
システム仕様を符号化し、対応する証明書を定義するためのフレームワークを提供する。
コントローラと証明書を形式的に合成する自動化手法を提案する。
我々のアプローチは、ニューラルネットワークの柔軟性を利用して、制御のための安全な学習の幅広い分野に寄与する。
論文 参考訳(メタデータ) (2023-09-12T09:37:26Z) - A Novel Approach to Identify Security Controls in Source Code [4.598579706242066]
本稿では,一般的なセキュリティ制御の包括的リストを列挙し,それぞれにデータセットを作成する。
最新のNLP技術であるBERT(Bidirectional Representations from Transformers)とTactic Detector(Tactic Detector)を使って、セキュリティコントロールを高い信頼性で識別できることを示しています。
論文 参考訳(メタデータ) (2023-07-10T21:14:39Z) - Tracking the Evolution of Static Code Warnings: the State-of-the-Art and
a Better Approach [18.350023994564904]
静的バグ検出ツールは、悪いプログラミングプラクティスや潜在的な欠陥など、開発者がコード内の問題を検出するのに役立つ。
最近のソフトウェア開発において、コードレビューや継続的統合のような静的バグ検出を統合しようとする動きは、報告された警告を即時に修正する動機付けをより良くしている。
論文 参考訳(メタデータ) (2022-10-06T03:02:32Z) - Monitoring ROS2: from Requirements to Autonomous Robots [58.720142291102135]
本稿では,構造化自然言語で記述された要件から自律ロボットのランタイムモニタを生成するための形式的アプローチの概要について述べる。
当社のアプローチでは,Fletal Requirement Elicitation Tool (FRET) とランタイム検証フレームワークであるCopilotを,Ogma統合ツールを通じて統合しています。
論文 参考訳(メタデータ) (2022-09-28T12:19:13Z) - Improving the Performance of Robust Control through Event-Triggered
Learning [74.57758188038375]
LQR問題における不確実性に直面していつ学習するかを決定するイベントトリガー学習アルゴリズムを提案する。
本研究では,ロバストな制御器ベースライン上での性能向上を数値例で示す。
論文 参考訳(メタデータ) (2022-07-28T17:36:37Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Adaptive Immunity for Software: Towards Autonomous Self-healing Systems [0.6117371161379209]
自己修復ソフトウェアシステムは、実行時に予期しない問題を検出し、診断し、含めることができる。
機械学習の最近の進歩は、システムを観察して学ぶことができる。
人工免疫システムは、特に自己修復システムを構築するのに適している。
論文 参考訳(メタデータ) (2021-01-07T13:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。