Application of Compromising Evolution in Multi-objective Image Error
Concealment
- URL: http://arxiv.org/abs/2011.05844v1
- Date: Wed, 11 Nov 2020 15:22:23 GMT
- Title: Application of Compromising Evolution in Multi-objective Image Error
Concealment
- Authors: Arash Broumand
- Abstract summary: The Compromising Evolution Method is proposed to modify the Simple Genetic Algorithm by utilizing the notion of compromise.
The simulation results show the power of the proposed method solving multi-objective optimizations in a case study of image error concealment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous multi-objective optimization problems encounter with a number of
fitness functions to be simultaneously optimized of which their mutual
preferences are not inherently known. Suffering from the lack of underlying
generative models, the existing convex optimization approaches may fail to
derive the Pareto optimal solution for those problems in complicated domains
such as image enhancement. In order to obviate such shortcomings, the
Compromising Evolution Method is proposed in this report to modify the Simple
Genetic Algorithm by utilizing the notion of compromise. The simulation results
show the power of the proposed method solving multi-objective optimizations in
a case study of image error concealment.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Smooth Tchebycheff Scalarization for Multi-Objective Optimization [15.047246588148495]
Multi-objective optimization problems can be found in many real-world applications, where the objectives often conflict each other and cannot be optimized by a single solution.
We propose a lightweight and efficient smooth Tchebycheff scalarization approach for gradient-based multi-objective optimization.
arXiv Detail & Related papers (2024-02-29T12:03:05Z) - Evolutionary Alternating Direction Method of Multipliers for Constrained
Multi-Objective Optimization with Unknown Constraints [17.392113376816788]
Constrained multi-objective optimization problems (CMOPs) pervade real-world applications in science, engineering, and design.
We present the first of its kind evolutionary optimization framework, inspired by the principles of the alternating direction method of multipliers that decouples objective and constraint functions.
Our framework tackles CMOPs with unknown constraints by reformulating the original problem into an additive form of two subproblems, each of which is allotted a dedicated evolutionary population.
arXiv Detail & Related papers (2024-01-02T00:38:20Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - An Effective and Efficient Evolutionary Algorithm for Many-Objective
Optimization [2.5594423685710814]
We develop an effective evolutionary algorithm (E3A) that can handle various many-objective problems.
In E3A, inspired by SDE, a novel population maintenance method is proposed.
We conduct extensive experiments and show that E3A performs better than 11 state-of-the-art many-objective evolutionary algorithms.
arXiv Detail & Related papers (2022-05-31T15:35:46Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
We study the scenario of components that are independent and normally distributed.
We introduce a multi-objective formulation of the problem which trades off the expected cost and its variance.
We prove that this approach can also be used to compute a set of optimal solutions for the chance constrained minimum spanning tree problem.
arXiv Detail & Related papers (2021-09-13T09:24:23Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.