論文の概要: Quantum walk-based portfolio optimisation
- arxiv url: http://arxiv.org/abs/2011.08057v3
- Date: Mon, 26 Jul 2021 13:38:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-23 23:42:24.187135
- Title: Quantum walk-based portfolio optimisation
- Title(参考訳): 量子ウォークに基づくポートフォリオ最適化
- Authors: N. Slate, E. Matwiejew, S. Marsh, J. B. Wang
- Abstract要約: 本稿では,近距離雑音型中間規模量子コンピュータを対象としたポートフォリオ最適化のための高効率量子アルゴリズムを提案する。
Hodsonらによる最近の研究は、金融ポートフォリオ再バランス問題へのハイブリッド量子古典アルゴリズムの適用の可能性を探っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a highly efficient quantum algorithm for portfolio
optimisation targeted at near-term noisy intermediate-scale quantum computers.
Recent work by Hodson et al. (2019) explored potential application of hybrid
quantum-classical algorithms to the problem of financial portfolio rebalancing.
In particular, they deal with the portfolio optimisation problem using the
Quantum Approximate Optimisation Algorithm and the Quantum Alternating Operator
Ansatz. In this paper, we demonstrate substantially better performance using a
newly developed Quantum Walk Optimisation Algorithm in finding high-quality
solutions to the portfolio optimisation problem.
- Abstract(参考訳): 本稿では,短期雑音量子コンピュータを対象としたポートフォリオ最適化のための高効率量子アルゴリズムを提案する。
hodsonらによる最近の研究(2019)は、金融ポートフォリオのリバランス問題に対するハイブリッド量子古典アルゴリズムの潜在的な応用を探求した。
特に、量子近似最適化アルゴリズムと量子交互作用素 ansatz を用いてポートフォリオ最適化問題を扱う。
本稿では,ポートフォリオ最適化問題に対する高品質な解を求めるために,新たに開発した量子ウォーク最適化アルゴリズムを用いて,実質的に優れた性能を示す。
関連論文リスト
- PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
ポートフォリオ最適化(PO)は、投資ポートフォリオのリスクを最小限に抑えつつ、純利益を最大化することを目的とした金融問題である。
本稿では,量子パラメータの変動を調べるために,新しいスケーラブルなフレームワークPO-QAを提案する。
本結果は,量子機械学習のレンズからPOを理解する上で有効な知見を提供する。
論文 参考訳(メタデータ) (2024-07-29T10:26:28Z) - Harnessing Inferior Solutions For Superior Outcomes: Obtaining Robust Solutions From Quantum Algorithms [0.0]
我々は、ロバストな最適化問題に取り組むために量子アルゴリズムを適用する。
本稿では、ロバストな最適解を得るための2つの革新的な方法を提案する。
これらはエネルギーセクター内の2つのユースケースに適用される。
論文 参考訳(メタデータ) (2024-04-25T17:32:55Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - A Novel Knapsack-based Financial Portfolio Optimization using Quantum Approximate Optimization Algorithm [2.6603181502541986]
本稿では,量子ウォークミキサーの量子計算能力と量子近似最適化アルゴリズム(QAOA)を用いて,NPハード問題による課題に対処する手法を提案する。
p>=3の回路層を用いたポートフォリオ最適化手法の近似比を,古典的なknapsack問題の解法と比較した。
論文 参考訳(メタデータ) (2024-02-11T08:20:26Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
古典学のパフォーマンスを、半ランダム化された一連のタスクで比較する。
量子システムにおける一般に好適な性能とクエリ効率のため、局所ゼロ階数に着目する。
論文 参考訳(メタデータ) (2023-10-14T02:13:26Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Finding the Optimal Currency Composition of Foreign Exchange Reserves
with a Quantum Computer [0.0]
本稿では,Markowitzモデルに基づく動的ポートフォリオ最適化への量子アルゴリズムの適用に焦点を当てる。
量子アルゴリズムを実行するには、IBM QuantumtextsuperscriptTMゲートベースの量子コンピュータを使用します。
この論文の二次目標は、中央銀行や他の金融市場規制機関のスタッフに量子最適化アルゴリズムに関する文献を提供することである。
論文 参考訳(メタデータ) (2023-03-03T13:19:07Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
本稿では,量子ハードウェア上での最適化問題解決に有用な Tabu Enhanced Hybrid Quantum Optimization メタヒューリスティック手法を提案する。
提案手法の理論的収束を,イジングモデルに基づくタブ状態を保存する対象の衝突の観点から考察する。
論文 参考訳(メタデータ) (2022-09-05T07:23:03Z) - A Quantum Online Portfolio Optimization Algorithm [0.0]
我々はHelmboldらによる既存の古典的オンラインポートフォリオ最適化アルゴリズムのサンプリング版を提供し、量子バージョンを開発する。
量子的優位性は、量子状態の準備や内部積推定といった技術を用いて達成される。
我々の量子アルゴリズムは、ポートフォリオの資産数である$n$という観点で、時間の複雑さの2次的なスピードアップを提供する。
論文 参考訳(メタデータ) (2022-08-31T09:51:32Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。