Smartphone-Based Test and Predictive Models for Rapid, Non-Invasive, and
Point-of-Care Monitoring of Ocular and Cardiovascular Complications Related
to Diabetes
- URL: http://arxiv.org/abs/2011.08068v1
- Date: Sun, 25 Oct 2020 00:57:35 GMT
- Title: Smartphone-Based Test and Predictive Models for Rapid, Non-Invasive, and
Point-of-Care Monitoring of Ocular and Cardiovascular Complications Related
to Diabetes
- Authors: Kasyap Chakravadhanula
- Abstract summary: Among the most impactful diabetic complications are diabetic retinopathy and cardiovascular disease.
This study describes the development of improved machine learning based screening of these conditions.
Accuracy scores, as well as the receiver operating characteristic curve, the learning curve, and other gauges, were promising.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Among the most impactful diabetic complications are diabetic retinopathy, the
leading cause of blindness among working class adults, and cardiovascular
disease, the leading cause of death worldwide. This study describes the
development of improved machine learning based screening of these conditions.
First, a random forest model was developed by retrospectively analyzing the
influence of various risk factors (obtained quickly and non-invasively) on
cardiovascular risk. Next, a deep-learning model was developed for prediction
of diabetic retinopathy from retinal fundus images by a modified and re-trained
InceptionV3 image classification model. The input was simplified by
automatically segmenting the blood vessels in the retinal image. The technique
of transfer learning enables the model to capitalize on existing infrastructure
on the target device, meaning more versatile deployment, especially helpful in
low-resource settings. The models were integrated into a smartphone-based
device, combined with an inexpensive 3D-printed retinal imaging attachment.
Accuracy scores, as well as the receiver operating characteristic curve, the
learning curve, and other gauges, were promising. This test is much cheaper and
faster, enabling continuous monitoring for two damaging complications of
diabetes. It has the potential to replace the manual methods of diagnosing both
diabetic retinopathy and cardiovascular risk, which are time consuming and
costly processes only done by medical professionals away from the point of
care, and to prevent irreversible blindness and heart-related complications
through faster, cheaper, and safer monitoring of diabetic complications. As
well, tracking of cardiovascular and ocular complications of diabetes can
enable improved detection of other diabetic complications, leading to earlier
and more efficient treatment on a global scale.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Convolutional Neural Network Model for Diabetic Retinopathy Feature
Extraction and Classification [6.236743421605786]
We create a novel CNN model and identifies the severity of Diabetic Retinopathy through fundus image input.
We classified 4 known DR features, including micro-aneurysms, cotton wools, exudates, and hemorrhages, through convolutional layers.
Our contribution is an interpretable model with similar accuracy to more complex models.
arXiv Detail & Related papers (2023-10-16T20:09:49Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - Secure and Privacy-Preserving Automated Machine Learning Operations into
End-to-End Integrated IoT-Edge-Artificial Intelligence-Blockchain Monitoring
System for Diabetes Mellitus Prediction [0.5825410941577593]
This paper proposes an IoT-edge-Artificial Intelligence (AI)-blockchain system for diabetes prediction based on risk factors.
The proposed system is underpinned by the blockchain to obtain a cohesive view of the risk factors data from patients across different hospitals.
Numerical experiments and comparative analysis were carried out between our proposed system, using the most accurate random forest (RF) model.
arXiv Detail & Related papers (2022-11-13T13:57:14Z) - A Residual Encoder-Decoder Network for Segmentation of Retinal
Image-Based Exudates in Diabetic Retinopathy Screening [1.8496844821697171]
We present a convolutional neural network with residual skip connection for the segmentation of exudates in retinal images.
The proposed network can robustly segment exudates with high accuracy, which makes it suitable for diabetic retinopathy screening.
arXiv Detail & Related papers (2022-01-16T04:08:17Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Sea-Net: Squeeze-And-Excitation Attention Net For Diabetic Retinopathy
Grading [9.181677987146418]
Diabetes is one of the most common disease in individuals.
Diabetic retinopathy (DR) is a complication of diabetes, which could lead to blindness.
DR grading based on retinal images provides a great diagnostic and prognostic value for treatment planning.
arXiv Detail & Related papers (2020-10-29T03:48:01Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Diabetic Retinopathy detection by retinal image recognizing [0.0]
The application development took place through convolutional neural networks, which do digital image processing analyzing each image pixel.
The use of VGG-16 as a pre-trained model to the application basis was very useful and the final model accuracy was 82%.
arXiv Detail & Related papers (2020-01-14T16:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.