論文の概要: Tissue characterization based on the analysis on i3DUS data for
diagnosis support in neurosurgery
- arxiv url: http://arxiv.org/abs/2011.08129v1
- Date: Sat, 24 Oct 2020 10:44:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 11:50:27.557158
- Title: Tissue characterization based on the analysis on i3DUS data for
diagnosis support in neurosurgery
- Title(参考訳): 神経外科における診断支援のためのi3DUSデータに基づく組織性状解析
- Authors: Mou-Cheng Xu
- Abstract要約: Attention-Mixed Res-U-net with asymmetric loss function" に基づくCADシステムにより,最先端の成果が得られた。
- 参考スコア(独自算出の注目度): 1.0423580478280678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain shift makes the pre-operative MRI navigation highly inaccurate hence
the intraoperative modalities are adopted in surgical theatre. Due to the
excellent economic and portability merits, the Ultrasound imaging is used at
our collaborating hospital, Charing Cross Hospital, Imperial College London,
UK. However, it is found that intraoperative diagnosis on Ultrasound images is
not straightforward and consistent, even for very experienced clinical experts.
Hence, there is a demand to design a Computer-aided-diagnosis system to provide
a robust second opinion to help the surgeons. The proposed CAD system based on
"Mixed-Attention Res-U-net with asymmetric loss function" achieves the
state-of-the-art results comparing to the ground truth by classification at
pixel-level directly, it also outperforms all the current main stream
pixel-level classification methods (e.g. U-net, FCN) in all the evaluation
metrices.
- Abstract(参考訳): 脳シフトは術前MRIナビゲーションを高精度に不正確なものにするため、術中モードが手術劇場で採用される。
英国インペリアル・カレッジ・ロンドン(英語版)のCharing Cross Hospital(英語版)の協力病院で超音波画像が用いられている。
しかし,超音波画像の術中診断は,非常に経験豊富な臨床専門家においても単純かつ一貫したものではないことが判明した。
そのため, コンピュータ支援診断システムの設計は, 外科医を助けるための頑健な第2の意見を提供することが求められている。
提案したCADシステムは,「非対称損失関数を持つミキシング・アテンション・レス・U-ネット」に基づく,画素レベルでの分類による地上の真理と比較して,全ての評価基準において,現在の主ストリームレベルの分類方法(U-net,FCNなど)よりも優れる。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Patient-Specific Real-Time Segmentation in Trackerless Brain Ultrasound [35.526097492693864]
術中超音波(iUS)画像検査は、脳外科手術の手術成績を改善する可能性がある。
しかし、その解釈は、専門家の神経外科医にとっても難しい。
本研究では,トラッカーレスiUSで脳腫瘍のセグメンテーションを行う最初の患者特異的フレームワークを設計した。
論文 参考訳(メタデータ) (2024-05-16T10:07:30Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - FocalErrorNet: Uncertainty-aware focal modulation network for
inter-modal registration error estimation in ultrasound-guided neurosurgery [3.491999371287298]
術中組織変形(脳シフトと呼ばれる)は、手術対象を移動させ、手術前の計画が無効になる可能性がある。
脳腫瘍手術におけるMRI-iUS登録誤差を正確に評価するために,3次元焦点変調に基づく新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-26T21:42:22Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Intra-operative Brain Tumor Detection with Deep Learning-Optimized
Hyperspectral Imaging [37.21885467891782]
グリオーマ(内因性脳腫瘍)の手術は、病変の浸潤性により困難である。
リアルタイム, 術中, ラベルフリー, 広視野の道具は使用できない。
術中指導の可能性を秘めた癌切除のための深層学習型診断ツールを構築した。
論文 参考訳(メタデータ) (2023-02-06T15:52:03Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Automatic Detection and Segmentation of Postoperative Cerebellar Damage
Based on Normalization [1.1470070927586016]
小脳損傷の確実な局在化と測定は、損傷した小脳領域と術後の神経学的結果との関係を研究するために不可欠である。
既存の脳の正常化法は術後のスキャンでは信頼性が低いため,手動ラベリングによる外科的損傷の計測が現在行われている。
術後3次元T1MRIを用いて,手術による小脳損傷を自動的に検出・測定する頑健なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-03T22:26:59Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
本稿では, 構造的磁気共鳴画像(sMRI)に基づく自閉症スペクトラム障害の診断を, 異常検出手法を用いて提案する。
GAN(Generative Adversarial Network)は、健康な被験者のsMRIスキャンでのみ訓練される。
実験の結果、ASD検出フレームワークは最先端のトレーニングデータと互換性があり、トレーニングデータもはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-02-21T04:37:25Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。