論文の概要: Deep Serial Number: Computational Watermarking for DNN Intellectual
Property Protection
- arxiv url: http://arxiv.org/abs/2011.08960v2
- Date: Tue, 6 Jun 2023 09:02:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 00:20:54.890167
- Title: Deep Serial Number: Computational Watermarking for DNN Intellectual
Property Protection
- Title(参考訳): ディープシリアルナンバー:DNN知的財産保護のための計算透かし
- Authors: Ruixiang Tang, Mengnan Du, Xia Hu
- Abstract要約: DSN(Deep Serial Number)はディープニューラルネットワーク(DNN)に特化した透かしアルゴリズムである。
従来のソフトウェアIPの保護においてシリアル番号に着想を得て,DNNに埋め込まれたシリアル番号の最初の実装を提案する。
- 参考スコア(独自算出の注目度): 53.40245698216239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present DSN (Deep Serial Number), a simple yet effective
watermarking algorithm designed specifically for deep neural networks (DNNs).
Unlike traditional methods that incorporate identification signals into DNNs,
our approach explores a novel Intellectual Property (IP) protection mechanism
for DNNs, effectively thwarting adversaries from using stolen networks.
Inspired by the success of serial numbers in safeguarding conventional software
IP, we propose the first implementation of serial number embedding within DNNs.
To achieve this, DSN is integrated into a knowledge distillation framework, in
which a private teacher DNN is initially trained. Subsequently, its knowledge
is distilled and imparted to a series of customized student DNNs. Each customer
DNN functions correctly only upon input of a valid serial number. Experimental
results across various applications demonstrate DSN's efficacy in preventing
unauthorized usage without compromising the original DNN performance. The
experiments further show that DSN is resistant to different categories of
watermark attacks.
- Abstract(参考訳): 本稿では,ディープニューラルネットワーク(DNN)に特化した簡易かつ効果的な透かしアルゴリズムであるDSN(Deep Serial Number)を提案する。
DNNに識別信号を組み込む従来の手法とは異なり、我々はDNNの知的財産権(IP)保護機構を探索し、敵の盗難ネットワークの使用を効果的に阻止する。
従来のソフトウェアIPの保護におけるシリアル番号の成功に触発されて,DNNに埋め込まれたシリアル番号の最初の実装を提案する。
これを実現するために、DSNは知識蒸留フレームワークに統合され、個人教師DNNが最初に訓練される。
その後、その知識は蒸留され、一連のカスタマイズされた学生DNNに付与される。
各顧客DNNは、有効なシリアル番号の入力時にのみ正しく機能する。
各種アプリケーションにまたがる実験結果から、元のDNN性能を損なうことなく、DSNが不正使用を防止する効果が示された。
さらに実験により、DSNは異なるカテゴリーのウォーターマーク攻撃に耐性があることが示されている。
関連論文リスト
- Deep Intellectual Property Protection: A Survey [70.98782484559408]
近年、ディープニューラルネットワーク(DNN)は革命的な進歩を遂げており、様々な分野で広く利用されている。
本研究の目的は,ディープウォーターマーキングとディープフィンガープリントの2つの主要なDNNIP保護手法を総合的に調査することである。
論文 参考訳(メタデータ) (2023-04-28T03:34:43Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Robust and Lossless Fingerprinting of Deep Neural Networks via Pooled
Membership Inference [17.881686153284267]
ディープニューラルネットワーク(DNN)は、すでに多くのアプリケーション分野で大きな成功を収めており、私たちの社会に大きな変化をもたらしています。
DNNの知的財産権(IP)を侵害から保護する方法は、最も重要かつ非常に困難なトピックの1つである。
本稿では,DNNモデルのIPを保護するために,Emphpooled Memberation Inference (PMI) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-09-09T04:06:29Z) - Black-box Safety Analysis and Retraining of DNNs based on Feature
Extraction and Clustering [0.9590956574213348]
DNNエラーの根本原因を自動的に識別するブラックボックスアプローチであるSAFEを提案する。
これは、ImageNetで事前訓練された転送学習モデルを使用して、エラー誘発画像から特徴を抽出する。
次に、密度に基づくクラスタリングアルゴリズムを適用し、誤りのもっともらしい原因をモデル化した画像の任意の形状のクラスタを検出する。
論文 参考訳(メタデータ) (2022-01-13T17:02:57Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
本研究では,ミリ波(mmWave)大規模マルチインプット多重出力(MIMO)システムのためのエンドツーエンドの深層学習に基づくジョイントトランスシーバ設計アルゴリズムを提案する。
我々は受信したパイロットを受信機でフィードバックビットにマッピングし、さらに送信機でハイブリッドプリコーダにフィードバックビットをマッピングするDNNアーキテクチャを開発した。
論文 参考訳(メタデータ) (2021-10-22T20:49:02Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - An Efficient Spiking Neural Network for Recognizing Gestures with a DVS
Camera on the Loihi Neuromorphic Processor [12.118084418840152]
Spiking Neural Networks(SNN)は、機械学習ベースのアプリケーションにおいて注目を浴びている。
本稿では,対応するディープニューラルネットワーク(DNN)とほぼ同じ精度のSNNの設計手法を示す。
我々のSNNは89.64%の分類精度を達成し、37のLoihiコアしか占有していない。
論文 参考訳(メタデータ) (2020-05-16T17:00:10Z) - CodNN -- Robust Neural Networks From Coded Classification [27.38642191854458]
ディープニューラルネットワーク(Deep Neural Networks、DNN)は、現在進行中の情報革命における革命的な力である。
DNNは、敵対的であろうとランダムであろうと、ノイズに非常に敏感である。
これは、DNNのハードウェア実装と、自律運転のような重要なアプリケーションへの展開において、根本的な課題となる。
提案手法により,DNNのデータ層あるいは内部層は誤り訂正符号で符号化され,ノイズ下での計算が成功することが保証される。
論文 参考訳(メタデータ) (2020-04-22T17:07:15Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
ディープニューラルネットワーク(DNN)は、敵対的な例やその他のデータ摂動に対して脆弱である。
GraNは、どのDNNにも容易に適応できる時間およびパラメータ効率の手法である。
GraNは多くの問題セットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-04-20T10:09:27Z) - DeepHammer: Depleting the Intelligence of Deep Neural Networks through
Targeted Chain of Bit Flips [29.34622626909906]
量子化ディープニューラルネットワーク(DNN)に対するハードウェアベースの最初の攻撃を実演する。
DeepHammerは、数分で実行時にDNNの推論動作を修正することができる。
私たちの研究は、将来のディープラーニングシステムにセキュリティメカニズムを組み込む必要性を強調しています。
論文 参考訳(メタデータ) (2020-03-30T18:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。