論文の概要: Neural network approximation and estimation of classifiers with
classification boundary in a Barron class
- arxiv url: http://arxiv.org/abs/2011.09363v2
- Date: Thu, 10 Mar 2022 16:32:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 04:57:34.950336
- Title: Neural network approximation and estimation of classifiers with
classification boundary in a Barron class
- Title(参考訳): バロン類における分類境界を持つ分類器のニューラルネットワーク近似と推定
- Authors: Andrei Caragea, Philipp Petersen, Felix Voigtlaender
- Abstract要約: 本稿では、ReLUニューラルネットワークを用いて、ある二項分類関数の近似と推定のバウンダリを証明した。
我々の推定バウンダリは、適切な大きさのネットワークを用いて経験的リスクを優先的に保証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove bounds for the approximation and estimation of certain binary
classification functions using ReLU neural networks. Our estimation bounds
provide a priori performance guarantees for empirical risk minimization using
networks of a suitable size, depending on the number of training samples
available. The obtained approximation and estimation rates are independent of
the dimension of the input, showing that the curse of dimensionality can be
overcome in this setting; in fact, the input dimension only enters in the form
of a polynomial factor. Regarding the regularity of the target classification
function, we assume the interfaces between the different classes to be locally
of Barron-type. We complement our results by studying the relations between
various Barron-type spaces that have been proposed in the literature. These
spaces differ substantially more from each other than the current literature
suggests.
- Abstract(参考訳): reluニューラルネットワークを用いた特定のバイナリ分類関数の近似と推定の境界を証明した。
評価バウンダリは、利用可能なトレーニングサンプルの数に応じて、適切なサイズのネットワークを用いて、経験的リスク最小化の事前性能を保証する。
得られた近似と推定率は入力の次元とは独立であり、この設定では次元の呪いが克服できることを示し、実際、入力次元は多項式係数の形でのみ入力される。
対象分類関数の正則性に関して、異なるクラス間の界面はバロン型の局所的なものであると仮定する。
文献で提案されている様々なバロン型空間間の関係を研究することで、その結果を補完する。
これらの空間は、現在の文献より大きく異なっている。
関連論文リスト
- Assouad, Fano, and Le Cam with Interaction: A Unifying Lower Bound Framework and Characterization for Bandit Learnability [71.82666334363174]
我々は,統計的推定と対話的意思決定において,下位境界法のための統一的なフレームワークを開発する。
対話型意思決定のための新しい下位境界の複雑さを促進する新しい尺度である決定次元を導入する。
論文 参考訳(メタデータ) (2024-10-07T15:14:58Z) - Dimension-independent learning rates for high-dimensional classification
problems [53.622581586464634]
各RBV2$関数は、重みが有界なニューラルネットワークによって近似可能であることを示す。
次に、分類関数を近似した有界重みを持つニューラルネットワークの存在を証明する。
論文 参考訳(メタデータ) (2024-09-26T16:02:13Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - An Upper Bound for the Distribution Overlap Index and Its Applications [18.481370450591317]
本稿では,2つの確率分布間の重なり関数に対する計算容易な上限を提案する。
提案した境界は、一級分類と領域シフト解析においてその値を示す。
私たちの研究は、重複ベースのメトリクスの応用を拡大する大きな可能性を示しています。
論文 参考訳(メタデータ) (2022-12-16T20:02:03Z) - Robust-by-Design Classification via Unitary-Gradient Neural Networks [66.17379946402859]
安全クリティカルシステムにおけるニューラルネットワークの使用には、敵攻撃が存在するため、安全で堅牢なモデルが必要である。
任意の入力 x の最小逆摂動を知るか、または同値に、分類境界から x の距離は、分類ロバスト性を評価し、証明可能な予測を与える。
Unitary-Gradient Neural Networkと呼ばれる新しいネットワークアーキテクチャが紹介される。
実験結果から,提案アーキテクチャは符号付き距離を近似し,単一の推論コストでxのオンライン分類が可能であることがわかった。
論文 参考訳(メタデータ) (2022-09-09T13:34:51Z) - Optimal learning of high-dimensional classification problems using deep
neural networks [0.0]
雑音のないトレーニングサンプルから分類関数を学習する際の問題について,決定境界が一定の規則性であることを前提として検討する。
局所バロン-正則な決定境界のクラスでは、最適推定率は本質的に基底次元とは独立である。
論文 参考訳(メタデータ) (2021-12-23T14:15:10Z) - Sobolev-type embeddings for neural network approximation spaces [5.863264019032882]
近似可能な速度に応じて関数を分類するニューラルネットワーク近似空間を考察する。
p$の異なる値に対して、これらの空間間の埋め込み定理を証明する。
古典函数空間の場合と同様、可積分性を高めるために「滑らかさ」(すなわち近似率)を交換できる。
論文 参考訳(メタデータ) (2021-10-28T17:11:38Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Conditional Variational Capsule Network for Open Set Recognition [64.18600886936557]
オープンセット認識では、分類器はトレーニング時に未知の未知のクラスを検出する必要がある。
最近提案されたカプセルネットワークは、特に画像認識において、多くの分野で代替案を上回ることが示されている。
本提案では,訓練中,同じ既知のクラスのカプセルの特徴を,事前に定義されたガウス型に適合させることを推奨する。
論文 参考訳(メタデータ) (2021-04-19T09:39:30Z) - Reduced Dilation-Erosion Perceptron for Binary Classification [1.3706331473063877]
ディレーション・エロージョン・パーセプトロン(Dilation-erosion Perceptron, DEP)は、ディレーションとエロージョンの凸結合によって得られるニューラルネットワークである。
本稿では,r-DEP(reduce Dilation-erosion)分類器を提案する。
論文 参考訳(メタデータ) (2020-03-04T19:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。