論文の概要: Meta Variational Monte Carlo
- arxiv url: http://arxiv.org/abs/2011.10614v1
- Date: Fri, 20 Nov 2020 20:11:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 06:42:51.789598
- Title: Meta Variational Monte Carlo
- Title(参考訳): メタ変異モンテカルロ
- Authors: Tianchen Zhao, James Stokes, Oliver Knitter, Brian Chen, Shravan
Veerapaneni
- Abstract要約: モデルに依存しないメタラーニング手法を提案する。
ランダムなMax-Cut問題に関する予備的な実験的研究は、結果のメタ変分モンテカルロがトレーニングを加速し、収束を改善することを示唆している。
- 参考スコア(独自算出の注目度): 6.415942961535791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An identification is found between meta-learning and the problem of
determining the ground state of a randomly generated Hamiltonian drawn from a
known ensemble. A model-agnostic meta-learning approach is proposed to solve
the associated learning problem and a preliminary experimental study of random
Max-Cut problems indicates that the resulting Meta Variational Monte Carlo
accelerates training and improves convergence.
- Abstract(参考訳): メタラーニングと既知のアンサンブルから引き出されたランダムに生成されたハミルトニアンの基底状態を決定する問題との間には、同定が存在する。
モデルに依存しないメタラーニング手法を提案し, ランダムなMax-Cut問題の予備実験により, 結果のメタ変分モンテカルロが学習を加速し, 収束を改善することを示す。
関連論文リスト
- Multilevel Monte Carlo methods for simulating forward-backward stochastic differential equations using neural networks [0.0]
我々は、これらの解と偏微分方程式の解との接続を強調する前方微分方程式を導入する。
本稿では,ニューラルネットワークを用いた高次元偏微分方程式の近似解法と,マルチレベルモンテカルロを用いた微分方程式の近似解について概説する。
論文 参考訳(メタデータ) (2024-11-02T16:55:56Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - Convergence Acceleration of Markov Chain Monte Carlo-based Gradient
Descent by Deep Unfolding [5.584060970507506]
本研究では,深部展開法(deep unfolding)と呼ばれる深部学習手法を用いて,最適化問題(COP)のトレーニング可能なサンプリングベース解法を提案する。
提案手法は,マルコフ鎖モンテカルロ(MCMC)と勾配勾配を結合したオオゼキ法に基づいている。
数個のCOPの数値計算結果から,提案した解法はオリジナルの大関法と比較して収束速度を著しく向上させた。
論文 参考訳(メタデータ) (2024-02-21T08:21:48Z) - Variational Inference for GARCH-family Models [84.84082555964086]
変分推論は、機械学習モデルにおけるベイズ推論の堅牢なアプローチである。
本研究では,変分推論がベイズ学習の魅力的な,極めてよく校正された,競争力のある方法であることを示す。
論文 参考訳(メタデータ) (2023-10-05T10:21:31Z) - Stochastic automatic differentiation for Monte Carlo processes [1.1279808969568252]
自動微分法(AD)のモンテカルロプロセスへの拡張について検討する。
ハミルトン的アプローチは、再重み付け手法の変数の変化と解釈できることを示す。
論文 参考訳(メタデータ) (2023-07-28T08:59:01Z) - Quantum Adversarial Learning in Emulation of Monte-Carlo Methods for
Max-cut Approximation: QAOA is not optimal [0.0]
変分量子アニーリングと量子近似最適化(QAOA)にエミュレーションの概念を適用する。
我々の変分量子アニーリングスケジュールは、同じ物理成分を用いて、QAOAと同様の勾配のない方法で最適化できる新しいパラメータ化に基づいている。
アンス・アッツ型の性能を比較するため,モンテカルロ法の統計的概念を考案した。
論文 参考訳(メタデータ) (2022-11-24T19:02:50Z) - Meta-Causal Feature Learning for Out-of-Distribution Generalization [71.38239243414091]
本稿では,協調タスク生成モジュール (BTG) とメタ因果特徴学習モジュール (MCFL) を含む,バランス付きメタ因果学習器 (BMCL) を提案する。
BMCLは、分類のためのクラス不変の視覚領域を効果的に識別し、最先端の手法の性能を向上させるための一般的なフレームワークとして機能する。
論文 参考訳(メタデータ) (2022-08-22T09:07:02Z) - Recursive Monte Carlo and Variational Inference with Auxiliary Variables [64.25762042361839]
再帰的補助変数推論(RAVI)はフレキシブルな提案を利用するための新しいフレームワークである。
RAVIは、表現力のある表現力のある家族を推論するためのいくつかの既存の手法を一般化し、統一する。
RAVIの設計枠組みと定理を,SalimansらによるMarkov Chain Variational Inferenceを用いて解析し,改良することにより示す。
論文 参考訳(メタデータ) (2022-03-05T23:52:40Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
モデルに依存しないメタラーニング(MAML)は、今日では最も人気があり広く採用されているメタラーニングアルゴリズムの1つである。
我々は、MAMLの動作メカニズムに対する新たな視点を提供し、以下に示すように、MAMLは、教師付きコントラスト目的関数を用いたメタラーナーに類似している。
このような干渉を軽減するため, 単純だが効果的な手法であるゼロ化手法を提案する。
論文 参考訳(メタデータ) (2021-06-29T12:52:26Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。