論文の概要: Multilevel Monte Carlo methods for simulating forward-backward stochastic differential equations using neural networks
- arxiv url: http://arxiv.org/abs/2411.01306v1
- Date: Sat, 02 Nov 2024 16:55:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:05.380085
- Title: Multilevel Monte Carlo methods for simulating forward-backward stochastic differential equations using neural networks
- Title(参考訳): ニューラルネットワークを用いた前後確率微分方程式のマルチレベルモンテカルロ法
- Authors: Oliver Sheridan-Methven,
- Abstract要約: 我々は、これらの解と偏微分方程式の解との接続を強調する前方微分方程式を導入する。
本稿では,ニューラルネットワークを用いた高次元偏微分方程式の近似解法と,マルチレベルモンテカルロを用いた微分方程式の近似解について概説する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce forward-backward stochastic differential equations, highlighting the connection between solutions of these and solutions of partial differential equations, related by the Feynman-Kac theorem. We review the technique of approximating solutions to high dimensional partial differential equations using neural networks, and similarly approximate solutions of stochastic differential equations using multilevel Monte Carlo. Connecting the multilevel Monte Carlo method with the neural network framework using the setup established by E et al. and Raissi, we replicate many of their empirical results, and provide novel numerical analyses to produce strong error bounds for the specific framework of Raissi. Our results bound the overall strong error in terms of the maximum of the discretisation error and the neural network's approximation error. Our analyses are pivotal for applications of multilevel Monte Carlo, for which we propose suitable frameworks to exploit the variance structures of the multilevel estimators we elucidate. Also, focusing on the loss function advocated by Raissi, we expose the limitations of this, highlighting and quantifying its bias and variance. Lastly, we propose various avenues of further research which we anticipate should offer significant insight and speed improvements.
- Abstract(参考訳): フォワード・バックワード確率微分方程式を導入し、これらの解と偏微分方程式の解の関連を、ファインマン・カックの定理に関連付ける。
本稿では,ニューラルネットワークを用いた高次元偏微分方程式の近似解法と,マルチレベルモンテカルロを用いた確率微分方程式の近似解について概説する。
E et al と Raissi の確立したセットアップを用いて,マルチレベルモンテカルロ法をニューラルネットワークフレームワークに接続することにより,実験結果の多くを再現し,Raissi の特定のフレームワークに対して強い誤差境界を生成するための新しい数値解析を行う。
我々の結果は、離散化誤差とニューラルネットワークの近似誤差の最大値の観点から、全体的な強い誤差を束縛した。
解析は多レベルモンテカルロの応用に欠かせないものであり, 解明した多レベル推定器の分散構造を利用するための適切なフレームワークを提案する。
また,Raissi が提唱する損失関数に着目し,その限界を明らかにし,バイアスと分散の定量化を行う。
最後に、我々はさらなる研究の様々な道程を提案し、さらなる洞察とスピードの改善を期待する。
関連論文リスト
- Bayesian polynomial neural networks and polynomial neural ordinary
differential equations [4.550705124365277]
ニューラルネットワークとニューラル常微分方程式(ODE)によるシンボリック回帰は、多くの科学・工学問題の方程式回復のための強力なアプローチである。
これらの手法はモデルパラメータの点推定を提供しており、現在ノイズの多いデータに対応できない。
この課題は、ラプラス近似、マルコフ連鎖モンテカルロサンプリング法、ベイズ変分推定法の開発と検証によって解決される。
論文 参考訳(メタデータ) (2023-08-17T05:42:29Z) - Combining Monte Carlo and Tensor-network Methods for Partial
Differential Equations via Sketching [1.3144299362395915]
テンソルネットワークを用いた高次元偏微分方程式の解法を提案する。
提案手法では,モンテカルロシミュレーションを用いて解を更新し,試料から新たな解をテンソルネットワークとして再推定する。
論文 参考訳(メタデータ) (2023-05-29T05:06:50Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Variational Monte Carlo Approach to Partial Differential Equations with
Neural Networks [0.0]
我々は高次元確率分布の進化を規定する偏微分方程式を解くための変分的アプローチを開発する。
我々のアプローチは自然に非有界連続領域に作用し、その変動パラメータを通して全確率密度関数を符号化する。
検討されたベンチマークケースに対しては、従来の計算手法に到達できないレジームにおける解析解と同様に、数値解との優れた一致を観察する。
論文 参考訳(メタデータ) (2022-06-04T07:36:35Z) - Recursive Monte Carlo and Variational Inference with Auxiliary Variables [64.25762042361839]
再帰的補助変数推論(RAVI)はフレキシブルな提案を利用するための新しいフレームワークである。
RAVIは、表現力のある表現力のある家族を推論するためのいくつかの既存の手法を一般化し、統一する。
RAVIの設計枠組みと定理を,SalimansらによるMarkov Chain Variational Inferenceを用いて解析し,改良することにより示す。
論文 参考訳(メタデータ) (2022-03-05T23:52:40Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
正規微分方程式(ODE)の解に対する乱射影ニューラルネットワーク(RPNN)に基づく数値スキームを提案する。
提案手法は剛性の影響を受けずに高い数値近似精度を示し,textttode45 と textttode15s の関数よりも優れていた。
論文 参考訳(メタデータ) (2021-08-03T15:49:17Z) - A Unified View of Stochastic Hamiltonian Sampling [18.300078015845262]
この研究は、後続サンプリングのためのハミルトン微分方程式(SDE)の理論的性質を再考する。
数値SDEシミュレーションから生じる2種類の誤差について検討し, 離散化誤差と雑音勾配推定による誤差について検討した。
論文 参考訳(メタデータ) (2021-06-30T16:50:11Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Scalable Control Variates for Monte Carlo Methods via Stochastic
Optimization [62.47170258504037]
本稿では,制御,カーネル,ニューラルネットワークを用いた既存のアプローチを包含し,一般化するフレームワークを提案する。
新たな理論的結果は、達成可能な分散還元に関する洞察を与えるために提示され、ベイズ推定への応用を含む経験的評価が支持される。
論文 参考訳(メタデータ) (2020-06-12T22:03:25Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。