論文の概要: Physics-Informed Neural State Space Models via Learning and Evolution
- arxiv url: http://arxiv.org/abs/2011.13497v1
- Date: Thu, 26 Nov 2020 23:35:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 08:38:35.970078
- Title: Physics-Informed Neural State Space Models via Learning and Evolution
- Title(参考訳): 学習と進化による物理インフォームド・ニューラルステート・スペースモデル
- Authors: Elliott Skomski, Jan Drgona, Aaron Tuor
- Abstract要約: システム同定のためのニューラル状態空間力学モデルの検出法について検討する。
モデル選択と最適化を交互に行う非同期な遺伝的探索アルゴリズムを用いる。
- 参考スコア(独自算出の注目度): 1.1086440815804224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works exploring deep learning application to dynamical systems
modeling have demonstrated that embedding physical priors into neural networks
can yield more effective, physically-realistic, and data-efficient models.
However, in the absence of complete prior knowledge of a dynamical system's
physical characteristics, determining the optimal structure and optimization
strategy for these models can be difficult. In this work, we explore methods
for discovering neural state space dynamics models for system identification.
Starting with a design space of block-oriented state space models and
structured linear maps with strong physical priors, we encode these components
into a model genome alongside network structure, penalty constraints, and
optimization hyperparameters. Demonstrating the overall utility of the design
space, we employ an asynchronous genetic search algorithm that alternates
between model selection and optimization and obtains accurate physically
consistent models of three physical systems: an aerodynamics body, a continuous
stirred tank reactor, and a two tank interacting system.
- Abstract(参考訳): 動的システムモデリングへのディープラーニングの適用を探求する最近の研究は、ニューラルネットワークに物理的事前を埋め込むことにより、より効果的で、物理的に現実的で、データ効率のよいモデルが得られることを示した。
しかし、力学系の物理特性に関する事前知識がなければ、これらのモデルの最適構造と最適化戦略を決定することは困難である。
本研究では,システム同定のための神経状態空間ダイナミクスモデルの発見法について検討する。
ブロック指向状態空間モデルと強い物理先行性を持つ構造線形写像の設計空間から始めて、これらの成分をネットワーク構造、ペナルティ制約、最適化ハイパーパラメータとともにモデルゲノムにエンコードする。
設計空間の全体的有用性を示すために, モデル選択と最適化を交互に交互に行う非同期遺伝的探索アルゴリズムを用い, 空力体, 連鋳タンクリアクター, 2タンク間相互作用システムという3つの物理システムの物理的に一貫性のある正確なモデルを得る。
関連論文リスト
- Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
本稿では,新しい物理符号化残差ニューラルネットワークアーキテクチャに基づく汎用的アプローチを提案する。
本手法は,物理モデルからの数学的演算子として物理ブロックを,フィードフォワード層を構成する学習ブロックと組み合わせる。
従来のニューラルネットワーク方式と比較して,本手法はデータ要求量を大幅に減らして一般化性を向上させる。
論文 参考訳(メタデータ) (2024-11-18T11:58:20Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
非線形状態空間グラフィカルモデルのための低ランク構造化変分オートエンコーダフレームワークを提案する。
我々のアプローチは、より予測的な生成モデルを学ぶ能力を一貫して示している。
論文 参考訳(メタデータ) (2024-03-03T02:19:49Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。