Multi-Label Contrastive Learning for Abstract Visual Reasoning
- URL: http://arxiv.org/abs/2012.01944v1
- Date: Thu, 3 Dec 2020 14:18:15 GMT
- Title: Multi-Label Contrastive Learning for Abstract Visual Reasoning
- Authors: Miko{\l}aj Ma{\l}ki\'nski, Jacek Ma\'ndziuk
- Abstract summary: State-of-the-art systems solving Raven's Progressive Matrices rely on massive pattern-based training and exploiting biases in the dataset.
Humans concentrate on identification of the rules / concepts underlying the RPM (or generally a visual reasoning task) to be solved.
We propose a new sparse rule encoding scheme for RPMs which, besides the new training algorithm, is the key factor contributing to the state-of-the-art performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For a long time the ability to solve abstract reasoning tasks was considered
one of the hallmarks of human intelligence. Recent advances in application of
deep learning (DL) methods led, as in many other domains, to surpassing human
abstract reasoning performance, specifically in the most popular type of such
problems - the Raven's Progressive Matrices (RPMs). While the efficacy of DL
systems is indeed impressive, the way they approach the RPMs is very different
from that of humans. State-of-the-art systems solving RPMs rely on massive
pattern-based training and sometimes on exploiting biases in the dataset,
whereas humans concentrate on identification of the rules / concepts underlying
the RPM (or generally a visual reasoning task) to be solved. Motivated by this
cognitive difference, this work aims at combining DL with human way of solving
RPMs and getting the best of both worlds. Specifically, we cast the problem of
solving RPMs into multi-label classification framework where each RPM is viewed
as a multi-label data point, with labels determined by the set of abstract
rules underlying the RPM. For efficient training of the system we introduce a
generalisation of the Noise Contrastive Estimation algorithm to the case of
multi-label samples. Furthermore, we propose a new sparse rule encoding scheme
for RPMs which, besides the new training algorithm, is the key factor
contributing to the state-of-the-art performance. The proposed approach is
evaluated on two most popular benchmark datasets (Balanced-RAVEN and PGM) and
on both of them demonstrates an advantage over the current state-of-the-art
results. Contrary to applications of contrastive learning methods reported in
other domains, the state-of-the-art performance reported in the paper is
achieved with no need for large batch sizes or strong data augmentation.
Related papers
- Burning RED: Unlocking Subtask-Driven Reinforcement Learning and Risk-Awareness in Average-Reward Markov Decision Processes [7.028778922533688]
Average-reward Markov decision processes (MDPs) provide a foundational framework for sequential decision-making under uncertainty.
We study a unique structural property of average-reward MDPs and utilize it to introduce Reward-Extended Differential (or RED) reinforcement learning.
arXiv Detail & Related papers (2024-10-14T14:52:23Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Pretrained Cost Model for Distributed Constraint Optimization Problems [37.79733538931925]
Distributed Constraint Optimization Problems (DCOPs) are an important subclass of optimization problems.
We propose a novel directed acyclic graph schema representation for DCOPs and leverage the Graph Attention Networks (GATs) to embed graph representations.
Our model, GAT-PCM, is then pretrained with optimally labelled data in an offline manner, so as to boost a broad range of DCOP algorithms.
arXiv Detail & Related papers (2021-12-08T09:24:10Z) - One-shot Visual Reasoning on RPMs with an Application to Video Frame
Prediction [1.0932251830449902]
Raven's Progressive Matrices (RPMs) are frequently used in evaluating human's visual reasoning ability.
We propose a One-shot Human-Understandable ReaSoner (Os-HURS) to tackle the challenges of real-world visual recognition and subsequent logical reasoning tasks.
arXiv Detail & Related papers (2021-11-24T06:51:38Z) - DAReN: A Collaborative Approach Towards Reasoning And Disentangling [27.50150027974947]
We propose an end-to-end joint representation-reasoning learning framework, which leverages a weak form of inductive bias to improve both tasks together.
We accomplish this using a novel learning framework Disentangling based Abstract Reasoning Network (DAReN) based on the principles of GM-RPM.
arXiv Detail & Related papers (2021-09-27T16:10:30Z) - Unsupervised Abstract Reasoning for Raven's Problem Matrices [9.278113063631643]
Raven's Progressive Matrices ( RPM) is highly correlated with human intelligence.
We propose the first unsupervised learning method for solving RPM problems.
Our method even outperforms some of the supervised approaches.
arXiv Detail & Related papers (2021-09-21T07:44:58Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.