RuleReasoner: Reinforced Rule-based Reasoning via Domain-aware Dynamic Sampling
- URL: http://arxiv.org/abs/2506.08672v1
- Date: Tue, 10 Jun 2025 10:31:21 GMT
- Title: RuleReasoner: Reinforced Rule-based Reasoning via Domain-aware Dynamic Sampling
- Authors: Yang Liu, Jiaqi Li, Zilong Zheng,
- Abstract summary: Rule-based reasoning has been acknowledged as one of the fundamental problems in reasoning.<n>We introduce Reinforced Rule-based Reasoning, a.k.a. RuleReasoner, a simple yet effective method to conduct rule-based reasoning.<n>Specifically, RuleReasoner resamples each training batch by updating the sampling weights of different domains based on historical rewards.
- Score: 25.12721060984898
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Rule-based reasoning has been acknowledged as one of the fundamental problems in reasoning, while deviations in rule formats, types, and complexity in real-world applications pose severe challenges. Recent studies have shown that large reasoning models (LRMs) have remarkable reasoning capabilities, and their performance is substantially enhanced by reinforcement learning (RL). However, it remains an open question whether small reasoning models (SRMs) can learn rule-based reasoning effectively with robust generalization across diverse tasks and domains. To address this, we introduce Reinforced Rule-based Reasoning, a.k.a. RuleReasoner, a simple yet effective method to conduct rule-based reasoning via a wide collection of curated tasks and a novel domain-aware dynamic sampling approach. Specifically, RuleReasoner resamples each training batch by updating the sampling weights of different domains based on historical rewards. This facilitates domain augmentation and flexible online learning schedules for RL, obviating the need for pre-hoc human-engineered mix-training recipes used in existing methods. Empirical evaluations on in-distribution (ID) and out-of-distribution (OOD) benchmarks reveal that RuleReasoner outperforms frontier LRMs by a significant margin ($\Delta$4.1% average points on eight ID tasks and $\Delta$10.4% average points on three OOD tasks over OpenAI-o1). Notably, our approach also exhibits higher computational efficiency compared to prior dynamic sampling methods for RL.
Related papers
- CAPO: Towards Enhancing LLM Reasoning through Verifiable Generative Credit Assignment [39.965170904699974]
Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback.<n>Current RLVR methods treat whole responses as single actions, assigning the same reward to every token.<n>This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure.
arXiv Detail & Related papers (2025-08-04T11:06:08Z) - Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - Learning to Route Queries Across Knowledge Bases for Step-wise Retrieval-Augmented Reasoning [60.84901522792042]
Multimodal Retrieval-Augmented Generation (MRAG) has shown promise in mitigating hallucinations in Multimodal Large Language Models (MLLMs)<n>We propose R1, a novel MRAG framework that learns to decide when and where to retrieve knowledge based on the evolving reasoning state.<n>R1- can adaptively and effectively leverage diverse KBs, reducing unnecessary retrievals and improving both efficiency and accuracy.
arXiv Detail & Related papers (2025-05-28T08:17:57Z) - Interleaved Reasoning for Large Language Models via Reinforcement Learning [22.403928213802036]
Long chain-of-thought (CoT) enhances large language models' (LLM) reasoning capabilities.<n>We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions.
arXiv Detail & Related papers (2025-05-26T07:58:17Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning [55.33984461046492]
Policy-based methods currently dominate reinforcement learning pipelines for large language model (LLM) reasoning.<n>We introduce Trajectory Bellman Residual Minimization (TBRM), an algorithm that naturally adapts this idea to LLMs.<n>We prove convergence to the near-optimal KL-regularized policy from arbitrary off-policy via an improved change-of-trajectory-measure analysis.
arXiv Detail & Related papers (2025-05-21T09:41:53Z) - General-Reasoner: Advancing LLM Reasoning Across All Domains [64.70599911897595]
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs)<n>We propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains.<n>We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc.
arXiv Detail & Related papers (2025-05-20T17:41:33Z) - R1-VL: Learning to Reason with Multimodal Large Language Models via Step-wise Group Relative Policy Optimization [86.32257216965229]
We propose a new online reinforcement learning framework that enables MLLMs to self-improve reasoning ability via simple, effective and dense step-wise rewarding.<n>StepGRPO introduces two novel rule-based reasoning rewards: Step-wise Reasoning Accuracy Reward (StepRAR) and Step-wise Reasoning Validity Reward (StepRVR)<n>With the proposed StepGRPO, we introduce R1-VL, a series of MLLMs with outstanding capabilities in step-by-step reasoning.
arXiv Detail & Related papers (2025-03-17T08:51:44Z) - ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding [25.329712997545794]
We propose Retrieval-Augmented Reasoning through Trustworthy Process Rewarding (ReARTeR)<n>ReARTeR enhances RAG systems' reasoning capabilities through post-training and test-time scaling.<n> Experimental results on multi-step reasoning benchmarks demonstrate significant improvements.
arXiv Detail & Related papers (2025-01-14T05:56:26Z) - Multi-Label Contrastive Learning for Abstract Visual Reasoning [0.0]
State-of-the-art systems solving Raven's Progressive Matrices rely on massive pattern-based training and exploiting biases in the dataset.
Humans concentrate on identification of the rules / concepts underlying the RPM (or generally a visual reasoning task) to be solved.
We propose a new sparse rule encoding scheme for RPMs which, besides the new training algorithm, is the key factor contributing to the state-of-the-art performance.
arXiv Detail & Related papers (2020-12-03T14:18:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.