論文の概要: Graph Convolutional Neural Networks for Body Force Prediction
- arxiv url: http://arxiv.org/abs/2012.02232v1
- Date: Thu, 3 Dec 2020 19:53:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-23 14:39:46.177792
- Title: Graph Convolutional Neural Networks for Body Force Prediction
- Title(参考訳): 体力予測のためのグラフ畳み込みニューラルネットワーク
- Authors: Francis Ogoke, Kazem Meidani, Amirreza Hashemi, Amir Barati Farimani
- Abstract要約: グラフベースのデータ駆動モデルを示し、非構造化メッシュ上で定義されたフィールドの推論を行う。
ネットワークは、異なる解像度のフィールドサンプルから推論することができ、各サンプルの測定結果が提示される順序に不変である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many scientific and engineering processes produce spatially unstructured
data. However, most data-driven models require a feature matrix that enforces
both a set number and order of features for each sample. They thus cannot be
easily constructed for an unstructured dataset. Therefore, a graph based
data-driven model to perform inference on fields defined on an unstructured
mesh, using a Graph Convolutional Neural Network (GCNN) is presented. The
ability of the method to predict global properties from spatially irregular
measurements with high accuracy is demonstrated by predicting the drag force
associated with laminar flow around airfoils from scattered velocity
measurements. The network can infer from field samples at different
resolutions, and is invariant to the order in which the measurements within
each sample are presented. The GCNN method, using inductive convolutional
layers and adaptive pooling, is able to predict this quantity with a validation
$R^{2}$ above 0.98, and a Normalized Mean Squared Error below 0.01, without
relying on spatial structure.
- Abstract(参考訳): 多くの科学的および工学的プロセスは、空間的に非構造化データを生成する。
しかしながら、ほとんどのデータ駆動モデルは、各サンプルのセット番号と機能の順序の両方を強制する機能マトリックスを必要とします。
したがって、非構造化データセットのために簡単に構築することはできない。
したがって、グラフ畳み込みニューラルネットワーク(GCNN)を用いて、非構造化メッシュ上で定義されたフィールドの推論を行うグラフベースのデータ駆動モデルを示す。
空間的不規則な測定から高精度にグローバルな特性を予測できる能力は,飛散速度測定から翼まわりの層流に付随する抗力を予測することで実証された。
ネットワークは異なる解像度でフィールドサンプルから推測することができ、各サンプル内の測定値が提示される順序に不変である。
GCNN法は、帰納的畳み込み層と適応プーリングを用いて、空間構造に依存することなく、0.98以上のR^{2}$と0.01以下の正規化平均二乗誤差でこの量を予測することができる。
関連論文リスト
- Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
我々は,PE-GNN,Quantile Neural Networks,および再校正技術を完全非パラメトリックフレームワークに統合する新しい手法である,位置グラフ量子ニューラルネットワーク(PE-GQNN)を紹介する。
ベンチマークデータセットの実験では、PE-GQNNは予測精度と不確実性の定量化の両方で既存の最先端手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-09-27T16:02:12Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
本稿では,メッシュ領域上での定常流体力学シミュレーションの代理モデルを学習する手法を提案する。
提案したモデルは, 異なる流れ条件に対して非構造領域に直接適用することができる。
顕著なことに、RANS超音速翼データセット上の高忠実度解法よりも5桁高速な推論を行うことができる。
論文 参考訳(メタデータ) (2024-07-29T11:48:44Z) - Neural networks for geospatial data [0.0]
NN-GLSは、GPモデルの非線形平均に対する新しいニューラルネットワーク推定アルゴリズムである。
NN-GLSはグラフニューラルネットワーク(GNN)の特殊型として表現されていることを示す。
理論的には、NN-GLSは不規則に観測された空間相関データプロセスに一貫性があることが示されている。
論文 参考訳(メタデータ) (2023-04-18T17:52:23Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Learning Curves for SGD on Structured Features [23.40229188549055]
本研究では,学習中におけるテストエラーを正確に予測するために,特徴空間内のデータの幾何学が重要であることを示す。
提案手法は,学習中のテストエラーを正確に予測するためには,特徴空間内のデータの幾何をモデル化することが極めて重要であることを示す。
論文 参考訳(メタデータ) (2021-06-04T20:48:20Z) - Probabilistic Numeric Convolutional Neural Networks [80.42120128330411]
画像や時系列などの連続的な入力信号は、不規則にサンプリングされたり、値が欠けていたりすることは、既存のディープラーニング手法では困難である。
ガウス過程(GP)として特徴を表す確率的畳み込みニューラルネットワークを提案する。
次に、畳み込み層を、このGP上で定義されたPDEの進化として定義し、次いで非線形性とする。
実験では,SuperPixel-MNISTデータセットの先行技術と医療時間2012データセットの競合性能から,提案手法の誤差を3倍に削減できることが示されている。
論文 参考訳(メタデータ) (2020-10-21T10:08:21Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。