論文の概要: Hierarchical Deep Recurrent Neural Network based Method for Fault
Detection and Diagnosis
- arxiv url: http://arxiv.org/abs/2012.03861v1
- Date: Mon, 7 Dec 2020 17:11:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 21:49:13.205628
- Title: Hierarchical Deep Recurrent Neural Network based Method for Fault
Detection and Diagnosis
- Title(参考訳): 階層型ディープリカレントニューラルネットワークによる故障検出と診断
- Authors: Piyush Agarwal, Jorge Ivan Mireles Gonzalez, Ali Elkamel, Hector
Budman
- Abstract要約: The algorithm is based on a Supervised Deep Recurrent Autoencoder Neural Network (Supervised DRAE-NN)
外部擬似ランダムバイナリ信号(prbs)がシステムに設計・注入され、初期故障を識別する。
階層構造に基づく戦略は初期故障と非初期故障の両方において検出と分類の精度を大幅に向上させる。
- 参考スコア(独自算出の注目度): 0.3670422696827526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Deep Neural Network (DNN) based algorithm is proposed for the detection and
classification of faults in industrial plants. The proposed algorithm has the
ability to classify faults, especially incipient faults that are difficult to
detect and diagnose with traditional threshold based statistical methods or by
conventional Artificial Neural Networks (ANNs). The algorithm is based on a
Supervised Deep Recurrent Autoencoder Neural Network (Supervised DRAE-NN) that
uses dynamic information of the process along the time horizon. Based on this
network a hierarchical structure is formulated by grouping faults based on
their similarity into subsets of faults for detection and diagnosis. Further,
an external pseudo-random binary signal (PRBS) is designed and injected into
the system to identify incipient faults. The hierarchical structure based
strategy improves the detection and classification accuracy significantly for
both incipient and non-incipient faults. The proposed approach is tested on the
benchmark Tennessee Eastman Process resulting in significant improvements in
classification as compared to both multivariate linear model-based strategies
and non-hierarchical nonlinear model-based strategies.
- Abstract(参考訳): 産業プラントの故障の検出と分類には,ディープニューラルネットワーク(dnn)に基づくアルゴリズムが提案されている。
提案するアルゴリズムは,従来のしきい値に基づく統計手法や従来のニューラルネットワーク(anns)では検出・診断が困難な障害,特に初期障害を分類する能力を有する。
このアルゴリズムは、時間軸に沿ったプロセスの動的情報を利用するSupervised Deep Recurrent Autoencoder Neural Network (Supervised DRAE-NN)に基づいている。
このネットワークに基づいて、階層構造は、類似性に基づいて断層のサブセットに分類し、検出と診断を行う。
さらに、外部擬似ランダムバイナリ信号(PRBS)をシステムに設計、注入し、初期故障を特定する。
階層構造に基づく戦略は初期故障と非初期故障の両方において検出と分類の精度を大幅に向上させる。
提案手法は,多変量線形モデルに基づくストラテジーと非階層非線形モデルに基づくストラテジーと比較して,テネシー・イーストマン法を指標として検証した。
関連論文リスト
- Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
ボットネット(Botnet)は、悪意あるアクターによって制御されるコンピュータネットワークで、重要なサイバーセキュリティ上の課題を提示する。
本研究は、機械学習ベースのボットネット検出システムを弱体化させることを目的として、攻撃者が引き起こす高度な敵操作に対処する。
ISCXデータセットとISOTデータセットに基づいてトレーニングされた機械学習とディープラーニングアルゴリズムを活用するフローベース検出アプローチを導入する。
論文 参考訳(メタデータ) (2024-09-01T08:53:21Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
本稿では,CNN,Recurrent Neural Networks(RNN),Deep Belief Networks(DBN),Deep Neural Networks(DNN),Long Short-Term Memory(LSTM),Autoencoders(AE),Multi-Layer Perceptrons(MLP),Self-Normalizing Networks(SNN),Hybrid Model(ネットワーク侵入検知システム)など,近年のディープラーニング技術の進歩について述べる。
論文 参考訳(メタデータ) (2024-02-26T20:57:35Z) - A novel approach for wafer defect pattern classification based on
topological data analysis [0.0]
半導体製造において、ウェハマップ欠陥パターンは設備維持と収量管理に重要な情報を提供する。
本稿では,欠陥パターンの形状を有限次元ベクトルとして表現する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-09-19T11:54:13Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Neural Network Adversarial Attack Method Based on Improved Genetic
Algorithm [0.0]
改良された遺伝的アルゴリズムに基づくニューラルネットワーク逆攻撃法を提案する。
この方法は、ニューラルネットワークモデルの内部構造やパラメータ情報を必要としない。
論文 参考訳(メタデータ) (2021-10-05T04:46:16Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Learning with Knowledge of Structure: A Neural Network-Based Approach
for MIMO-OFDM Detection [33.46816493359834]
シンボル検出に対する貯水池計算(RC)に基づくアプローチに基づいて、対称かつ分解された二項決定ニューラルネットワークを導入する。
導入した対称ニューラルネットワークは、元の$M$-ary検出問題を一連のバイナリ分類タスクに分解できることを示す。
数値評価により,導入したハイブリッドRCバイナリ決定フレームワークは,最大値モデルに基づくシンボル検出を行うことができる。
論文 参考訳(メタデータ) (2020-12-01T18:16:19Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,潜在変数の分類に使用される特徴を説明するために,新しい解釈可能性手法であるInterpretGANを提案する。
また、各層がもたらす脆弱性を定量化する最初の診断方法も設計する。
論文 参考訳(メタデータ) (2020-07-17T01:56:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。