Using Feature Alignment Can Improve Clean Average Precision and
Adversarial Robustness in Object Detection
- URL: http://arxiv.org/abs/2012.04382v2
- Date: Mon, 21 Dec 2020 05:04:38 GMT
- Title: Using Feature Alignment Can Improve Clean Average Precision and
Adversarial Robustness in Object Detection
- Authors: Weipeng Xu, Hongcheng Huang, Shaoyou Pan
- Abstract summary: We propose that using feature alignment of intermediate layer can improve clean AP and robustness in object detection.
We conduct extensive experiments on PASCAL VOC and MS-COCO datasets to verify the effectiveness of our proposed approach.
- Score: 11.674302325688862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 2D object detection in clean images has been a well studied topic, but
its vulnerability against adversarial attack is still worrying. Existing work
has improved robustness of object detectors by adversarial training, at the
same time, the average precision (AP) on clean images drops significantly. In
this paper, we propose that using feature alignment of intermediate layer can
improve clean AP and robustness in object detection. Further, on the basis of
adversarial training, we present two feature alignment modules:
Knowledge-Distilled Feature Alignment (KDFA) module and Self-Supervised Feature
Alignment (SSFA) module, which can guide the network to generate more effective
features. We conduct extensive experiments on PASCAL VOC and MS-COCO datasets
to verify the effectiveness of our proposed approach. The code of our
experiments is available at https://github.com/grispeut/Feature-Alignment.git.
Related papers
- Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing.
We propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC)
Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects.
arXiv Detail & Related papers (2024-03-20T08:15:18Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Robust and Accurate Object Detection via Self-Knowledge Distillation [9.508466066051572]
Unified Decoupled Feature Alignment (UDFA) is a novel fine-tuning paradigm which achieves better performance than existing methods.
We show that UDFA can surpass the standard training and state-of-the-art adversarial training methods for object detection.
arXiv Detail & Related papers (2021-11-14T04:40:15Z) - Aligning Pretraining for Detection via Object-Level Contrastive Learning [57.845286545603415]
Image-level contrastive representation learning has proven to be highly effective as a generic model for transfer learning.
We argue that this could be sub-optimal and thus advocate a design principle which encourages alignment between the self-supervised pretext task and the downstream task.
Our method, called Selective Object COntrastive learning (SoCo), achieves state-of-the-art results for transfer performance on COCO detection.
arXiv Detail & Related papers (2021-06-04T17:59:52Z) - Uncertainty-aware Joint Salient Object and Camouflaged Object Detection [43.01556978979627]
We propose a paradigm of leveraging the contradictory information to enhance the detection ability of both salient object detection and camouflaged object detection.
We introduce a similarity measure module to explicitly model the contradicting attributes of these two tasks.
Considering the uncertainty of labeling in both tasks' datasets, we propose an adversarial learning network to achieve both higher order similarity measure and network confidence estimation.
arXiv Detail & Related papers (2021-04-06T16:05:10Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
This work augments the fine-tuning stage for object detectors by exploring adversarial examples.
Our approach boosts the performance of state-of-the-art EfficientDets by +1.1 mAP on the object detection benchmark.
arXiv Detail & Related papers (2021-03-23T19:45:26Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z) - iFAN: Image-Instance Full Alignment Networks for Adaptive Object
Detection [48.83883375118966]
iFAN aims to precisely align feature distributions on both image and instance levels.
It outperforms state-of-the-art methods with a boost of 10%+ AP over the source-only baseline.
arXiv Detail & Related papers (2020-03-09T13:27:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.