論文の概要: Consistent regression of biophysical parameters with kernel methods
- arxiv url: http://arxiv.org/abs/2012.04922v1
- Date: Wed, 9 Dec 2020 08:59:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 02:08:52.457736
- Title: Consistent regression of biophysical parameters with kernel methods
- Title(参考訳): カーネル法による生体物理パラメータの連続回帰
- Authors: Emiliano D\'iaz, Adri\'an P\'erez-Suay, Valero Laparra, Gustau
Camps-Valls
- Abstract要約: 本稿では,一貫性制約を組み込むための新しい統計的回帰フレームワークを提案する。
クロロフィル含量の推定における性能の解明に成功している。
- 参考スコア(独自算出の注目度): 10.355562369122241
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel statistical regression framework that allows
the incorporation of consistency constraints. A linear and nonlinear
(kernel-based) formulation are introduced, and both imply closed-form
analytical solutions. The models exploit all the information from a set of
drivers while being maximally independent of a set of auxiliary, protected
variables. We successfully illustrate the performance in the estimation of
chlorophyll content.
- Abstract(参考訳): 本稿では,一貫性制約を組み込むための新しい統計的回帰フレームワークを提案する。
線形および非線形(カーネルベース)な定式化が導入され、どちらも閉形式解析解である。
モデルは、補助的かつ保護された変数のセットから最大独立なまま、ドライバのセットからのすべての情報を利用する。
クロロフィル含量の推定における性能の解明に成功している。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - A Short Information-Theoretic Analysis of Linear Auto-Regressive Learning [1.223779595809275]
線形自己回帰モデルにおけるガウス最大極大推定器の整合性に関する短い情報理論的証明を与える。
我々の証明はパラメータ回復のためのほぼ最適な非漸近速度をもたらし、有限仮説クラスの場合の安定性の呼び出しなしに機能する。
論文 参考訳(メタデータ) (2024-09-10T11:42:22Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression [0.0]
本研究では,ベイズフレームワークにおける過パラメータ化非線形回帰の予測特性について検討した。
リプシッツ連続活性化関数を持つ一般化線形および単一ニューロンモデルに対して後部収縮が成立する。
提案手法は数値シミュレーションと実データアプリケーションを用いて検証した。
論文 参考訳(メタデータ) (2024-04-06T04:22:48Z) - Finite Sample Confidence Regions for Linear Regression Parameters Using
Arbitrary Predictors [1.6860963320038902]
線形モデルのパラメータに対する信頼領域を構築するための新しい手法を任意の予測器からの予測を用いて検討する。
導出された信頼領域は、混合線形プログラミングフレームワーク内の制約としてキャストすることができ、線形目的の最適化を可能にする。
従来の手法とは異なり、信頼領域は空であり、仮説テストに使用できる。
論文 参考訳(メタデータ) (2024-01-27T00:15:48Z) - Estimation Sample Complexity of a Class of Nonlinear Continuous-time Systems [0.0]
本稿では, 大規模非線形系のパラメータ推定法について述べる。
正規化線形回帰を用いて力学を直接反転させることにより未知パラメータを解く手法は、微分フィルタと正規化最小二乗の新たな設計と解析のアイデアに基づいている。
論文 参考訳(メタデータ) (2023-12-08T21:42:11Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Youla-REN: Learning Nonlinear Feedback Policies with Robust Stability
Guarantees [5.71097144710995]
本稿では,最近開発されたニューラルネットワークアーキテクチャ上に構築された不確実性システムに対する非線形制御器のパラメータ化について述べる。
提案したフレームワークは、安定性の保証、すなわち、検索空間におけるすべてのポリシーが、契約(グローバルに指数関数的に安定した)クローズドループシステムをもたらすことを保証する。
論文 参考訳(メタデータ) (2021-12-02T13:52:37Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。